Sums of Squares for Estimation Problems*

Aaron Geelon So

November 13, 2018

1 Review of SOS

First, we review SOS as a proof system for polynomials systems. Before proceeding to estimation problems, let's motivate SOS from a more general perspective to understand the techniques. For now, instead of focusing on polynomials, we'll look at all measurable functions over \mathbb{R}^{n}. Let \mathcal{A} be a collection of constraints on \mathbb{R}^{n},

$$
\mathcal{A}:=\left\{f_{1} \geq 0, \ldots, f_{m} \geq 0\right\}
$$

and let $\mathcal{X} \subset \mathbb{R}^{n}$ be the feasible set where all constraints are satisfied. We make two remarks:
(i) the collection \mathcal{C} of functions f that are nonnegative on \mathcal{X} is equivalent to the collection of functions of the following form:

$$
\begin{equation*}
f=\sum_{i} g_{i}^{2} f_{i}+h^{2} \tag{1}
\end{equation*}
$$

This collection \mathcal{C} seems somewhat reminiscent of the radical of \mathcal{A} from algebraic geometry. ${ }^{1}$
(ii) let $\mathbb{E}_{\mu}: \mathcal{F} \rightarrow \mathbb{R}$ be a linear functional parametrized by μ, where $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has finite support,

$$
\begin{equation*}
\underset{\mu}{\mathbb{E}} f:=\sum_{x \in \operatorname{supp}(\mu)} \mu(x) f(x) \quad \text { and } \quad \underset{\mu}{\mathbb{E}} 1=1 \tag{2}
\end{equation*}
$$

The collection of all such μ such that $\mathbb{E}_{\mu} f \geq 0$ when $f \in \mathcal{C}$ are precisely the finitely-supported probability distributions, where $\operatorname{supp}(\mu) \subset \mathcal{X}$.

From these two facts, we could build a proof system. In particular, if f can be represented as in Equation 1, we can say there is a sum of squares proof for $f \geq 0$ when constrained to \mathcal{A}, writing:

$$
\mathcal{A} \vdash\{f \geq 0\}
$$

Further, we can think of μ satisfying $\mathbb{E}_{\mu} f \geq 0$ for all $f \in \mathcal{C}$ as a witness to the satisfiability of \mathcal{A}, writing:

$$
\mu \vDash \mathcal{A} .
$$

Notice that if we can prove that there is a unique point $x^{*} \in \mathbb{R}^{n}$ that satisfies \mathcal{A}, i.e. $\mathcal{A} \vdash\left\{x=x^{*}\right\}$, then $\mu \vDash \mathcal{A}$ implies $\mu=\delta_{x}$, the Dirac distribution whose mass is concentrated on x. And so, if there were an efficient way to obtain the linear functional \mathbb{E}_{μ} when given \mathcal{A}, then we could efficiently solve for x^{*}. Of course, this is asking for too much in this general case, but perhaps not in the case restricted to polynomials.

[^0]
1.1 Formalities

We'll now give the polynomial framework in which SOS operates. All functions we consider will come from $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$, real polynomials with n indeterminants. For brevity, we'll condense $\left(X_{1}, \ldots, X_{n}\right)$ to just X, and let $\mathbb{R}[X]_{\leq d}$ be the collection of polynomials $p\left(X_{1}, \ldots, X_{n}\right)$ with degree at most d.

Definition 1. Let $\mathcal{A}=\left\{p_{1} \geq 0, \ldots, p_{m} \geq 0\right\}$ be a collection of polynomial constraints. We say that \mathcal{A} is a collection of axioms. We say that there is a sum-of-squares proof of $q \geq 0$ from \mathcal{A} if:

$$
\left(\sum_{k} c_{k}^{2}\right) q=\sum_{i} a_{i}^{2} p_{i}+\sum_{j} b_{j}^{2}
$$

where $a_{i}, b_{j}, c_{k} \in \mathbb{R}[X]$ and the sums are finite. The degree of the sum-of-squares proof is the degree d of the polynomial $\sum_{i} a_{i}^{2} p_{i}+\sum_{j} b_{j}^{2}$. We write $\mathcal{A} \vdash_{d}\{q \geq 0\}$.

Fact 2 ([P2000], [L2001]). If a degree-d sum-of-squares proof exists, then semidefinite programming (SDP) can find a proof in $n^{O(d)}$ time. As such an algorithm for each even degree d, we call this family of algorithms the sum-of-squares SDP hierarchy or the Laserre hierarchy.

Proposition 3. If there is a degree-d sum-of-squares proof that $q \geq 0$ given \mathcal{A}, i.e. $\mathcal{A} \vdash_{d}\{q \geq 0\}$, then $q(x) \geq 0$ for all $x \in \mathbb{R}^{n}$ satisfying \mathcal{A}.

Definition 4. For a system of polynomial constraints \mathcal{A}, a degree- d pseudo-expectation is a linear functional $\widetilde{\mathbb{E}}: \mathbb{R}[X]_{\leq d} \rightarrow \mathbb{R}$ satisfying the following:
(i) $\widetilde{\mathbb{E}} 1=1$
(ii) $\widetilde{\mathbb{E}} f \geq 0$ whenever $f \in \mathbb{R}[X]_{\leq d}$ is of the form:

$$
f=\sum_{i} a_{i}^{2} p_{i}+\sum_{j} b_{j}^{2}
$$

Fact 5. If for a polynomial system \mathcal{A}, there exists a degree-d pseudo-expectation, then the dual SDP computes a degree-d pseudo-expectation in time $n^{O(d)}$.

Remark 6. Notice that the evaluation functional $\mathrm{ev}_{x}: \mathbb{R}[X]_{\leq d} \rightarrow \mathbb{R}$ is linear, defined so that $\mathrm{ev}_{x}(f) \equiv f(x)$. Furthermore, since $\mathbb{R}[X]_{\leq d}$ is a finite linear space, its dual is also finite dimensional. It follows that every degree-d pseudo-expectation has representation of the form:

$$
\widetilde{\mathbb{E}} \equiv \sum_{i=1}^{k} \mu_{i} \mathrm{ev}_{x_{i}}
$$

In particular, we can think of $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as a pseudo-distribution on \mathbb{R}^{n}, supported on the x_{i} 's, and where the mass on the point x_{i} is μ_{i}. Such a representation is not unique, but given μ, we can write:

$$
\underset{\mu}{\widetilde{\mathbb{E}}} f:=\sum_{x \in \operatorname{supp}(\mu)} \mu(x) f(x) .
$$

Example 7. In contrast to the motivating discussion over all functions, the support of μ is not restricted to the feasible set of \mathcal{A}, nor are the 'pseudo-probability masses' necessarily nonnegative. For example, consider the degree-2 pseudo-distribution $\mu: \mathbb{R}[X]_{\leq 2} \rightarrow \mathbb{R}$, where:

$$
\mu(x)= \begin{cases}1 & x= \pm 1 \\ -1 & x=0 \\ 0 & \text { o.w. }\end{cases}
$$

Indeed, for all $f=a(x+b)$, we see that $\widetilde{\mathbb{E}}_{\mu} f^{2}=a^{2}\left(2+b^{2}\right) \geq 0$. Note that this is just one representation of the linear functional $\widetilde{\mathbb{E}}$ such that $\widetilde{\mathbb{E}} 1=1, \widetilde{\mathbb{E}} X=0$, and $\widetilde{\mathbb{E}} X^{2}=2$.

We can define degree- d pseudo-distributions in generally by setting $\mathcal{A}=\varnothing$.
Definition 8. A function $\mu: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a degree-d pseudo-distribution if for all polynomials f such that $\operatorname{deg}\left(f^{2}\right) \leq d$, the pseudo-expectation with respect to μ is nonnegative, $\widetilde{\mathbb{E}}_{\mu} f^{2} \geq 0$. Let \mathcal{A} be a collection of axioms. We say that μ satisfies \mathcal{A} if $\widetilde{\mathbb{E}}_{\mu}$ is a pseudo-expectation consistent with \mathcal{A}. We write $\mu \vDash \mathcal{A}$.

Lemma 9 (Soundness, [B2016]). Let μ be a pseudo-distribution and let \mathcal{A}, \mathcal{B} be systems of polynomial constraints. If $\mu \vDash \mathcal{A}$ and $\mathcal{A} \vdash \mathcal{B}$, then $\mu \vDash \mathcal{B}$.

Lemma 10 (Cauchy-Schwarz, [RSS2018]). Let $\widetilde{\mathbb{E}}$ be a degree-d pseudo-expectation. Let $p, q \in \mathbb{R}[X]$ with degree at most $d / 2$. Then:

$$
\widetilde{\mathbb{E}}[p q] \leq\left(\widetilde{\mathbb{E}} p^{2}\right)^{1 / 2}\left(\widetilde{\mathbb{E}} q^{2}\right)^{1 / 2}
$$

This will be enough to set up the framework for estimation problems.

2 Estimation Problems

We can formalize an estimation problem as consisting of a set $\mathcal{X} \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ of pairs (x, y). We say that x is the parameter and y is the measurement. Out of this set of possibilities, one pair $\left(x^{*}, y^{*}\right)$ is selected, but we only get access the measurement y^{*}. The goal is to (approximately) recover x^{*}.

Definition 11. For a pair $(x, y) \in \mathcal{X}$, we say that y identifies x exactly when $\left(x^{\prime}, y\right) \in \mathcal{X}$ iff $x^{\prime}=x$. We say that y identifies x up to ϵ when $\left(x^{\prime}, y\right) \in \mathcal{X}$ iff $\left\|x-x^{\prime}\right\| \leq \epsilon$.

If we have estimation problems that can be described with polynomials, and we measure y^{*}, then we can write \mathcal{X} as the feasible region to a collection of polynomials

$$
\mathcal{A}=\left\{p_{1}\left(X, y^{*}\right) \geq 0, \ldots, p_{m}\left(X, y^{*}\right) \geq 0\right\}
$$

Let $\delta_{x^{*}}$ be the (pseudo-) distribution with mass concentrated at x^{*}. It follows that $\widetilde{\mathbb{E}}_{\delta_{x^{*}}}$ is a pseudo-expectation consistent with \mathcal{A}. It would be great if we could retrieve $\widetilde{\mathbb{E}}_{\delta_{x^{*}}}$, since that would immediately give us x^{*}, solving the estimation problem. However, running a SDP with constraints \mathcal{A} is not guaranteed to return this particular pseudo-expectation. It may not matter, if we can give a low-degree SOS proof of identifiability:

$$
\mathcal{A} \vdash_{d}\left\{\left\|X-x^{*}\right\|^{2} \leq \epsilon\right\}
$$

where ϵ is possibly 0 if x^{*} is exactly identifiable. Then, we're guaranteed an efficient algorithm that retrieves x^{*} within $\epsilon+2^{-n^{d}}$. We state this slightly more generally by allowing a third auxilary variable that can often simplify the description of \mathcal{X} :

Theorem 12 (Meta-theorem for efficient estimation [RSS2018]). Let $p \in \mathbb{R}[X, Y, Z]$ and let $\left(x^{*}, y^{*}, z^{*}\right)$ satisfy $p=0$. Let $\mathcal{A}=\left\{p\left(X, y^{*}, Z\right)=0\right\}$. Suppose:

$$
\mathcal{A} \vdash_{d}\left\{\left\|X-x^{*}\right\|^{2} \leq \epsilon\right\} .
$$

Then, every degree-d pseudo-distribution μ consistent with \mathcal{A} satisfies:

$$
\begin{equation*}
\left\|x^{*}-\underset{\mu}{\widetilde{\mathbb{E}}} X\right\|^{2} \leq \epsilon \tag{3}
\end{equation*}
$$

Furthermore, for every $d \in \mathbb{N}$, there exists an $n^{O(d)}$-time algorithm with bit-complexity at most n^{d} that returns and estimate $\hat{x}\left(y^{*}\right)$ such that $\left\|x^{*}-\hat{x}\left(y^{*}\right)\right\|^{2} \leq \epsilon+2^{-n^{d}}$.

Proof. By assumption, μ is consistent with \mathcal{A}, so that $\mu \vDash \mathcal{A}$. When we combine this with $\mathcal{A} \vdash\left\{\left\|X-x^{*}\right\|^{2} \leq \epsilon\right\}$, soundness implies $\mu \vdash\left\{\left\|X-x^{*}\right\|^{2} \leq \epsilon\right\}$. It follows that:

$$
\underset{\mu}{\widetilde{\mathbb{E}}}\left\|X-x^{*}\right\|^{2} \leq \epsilon .
$$

On the other hand, Cauchy-Schwarz implies:

$$
\left\|\underset{\mu}{\widetilde{\mathbb{E}}}\left(X-x^{*}\right)\right\|^{2}=\underset{\mu}{\widetilde{\mathbb{E}}}\left\langle X-x^{*}, \underset{\mu}{\widetilde{\mathbb{E}}}\left(X-x^{*}\right)\right\rangle \leq\left\|\underset{\mu}{\widetilde{\mathbb{E}}}\left(X-x^{*}\right)\right\| \cdot \underbrace{\underset{\mu}{\widetilde{\mathbb{E}}}\left\|X-x^{*}\right\|^{2}}_{\epsilon}
$$

proving Equation 3.
To get an efficient algorithm, we just need to obtain \widetilde{E}_{μ} using the SDP, which takes $n^{O(d)}$ time, and with bit complexity n^{d}, we can ensure that our computation \hat{x} is within $2^{-n^{d}}$ of $\widetilde{\mathbb{E}}_{\mu} X$.

Let's see how this framework plays out in a few examples.

2.1 Matrix completion

In the general problem, let $M \in \mathbb{R}^{n \times n}$ be a rank- r matrix. We're given access to values M_{Ω}, where $\Omega \subset[n] \times[n]$ is a subset of indices. The goal is then to recover M from M_{Ω}. It turns out that we can often recover M almost exactly with high probability under certain conditions.

Definition 13. Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ be unit vectors. We say that they are μ-incoherent if for all v_{i} and for all standard basis vectors e_{j},

$$
\left\langle v_{i}, e_{j}\right\rangle^{2} \leq \frac{\mu}{n}
$$

For example, random unit vectors from the sphere are μ-incoherent when $\mu \leq O(\log n)$ with high probability. When the right and left singular values of M are μ-incoherent, then as long as M_{Ω} contains at least $m \geq \mu r n \cdot O(\log n)^{2}$ entries, we can recover M exactly with high probability. This bound on m is almost optimal, since an $n \times n$ rank- r matrix has $\Omega(r n)$ degrees of freedom, for each singular vector.

Let's consider the simplified case where M is a rank- r projection:
Theorem 14 (Identifiability for matrix completion, [RSS2018]). Let $M=\sum_{i=1}^{r} a_{i} a_{i}^{T}$ be an r-dimensional projector, where $a_{i} \in \mathbb{R}^{n}$ are orthonormal vectors with incoherence $\mu=\max _{i, j} n \cdot\left\langle a_{i}, e_{j}\right\rangle^{2}$. Let $\Omega \subset[n] \times[n]$ be a random symmetric subset of size $|\Omega|=m$. Consider the following system of polynomial constraints:

$$
\mathcal{A}=\left\{\left(B B^{T}\right)_{\Omega}=M_{\Omega}, B^{T} B={ }_{r}\right\}
$$

If $m \geq \mu r n \cdot O(\log n)^{2}$, then with high probability over choice of Ω,

$$
\mathcal{A} \vdash_{4}\left\{\left\|B B^{T}-M\right\|_{F}=0\right\}
$$

The proof will utilize the following lemma, whose proof we'll leave to the literature.
Lemma 15 ([G2011], [R2011], [C2015]). Let M, a_{i} as before, and in particular, the a_{i} 's are μ-incoherent. Let $\bar{\Omega} \subset[n] \times[n]$ be the complement of Ω. Then, with high probability over the choice of Ω, there exists a symmetric matrix N such that $N_{\Omega}=0$, and

$$
-0.9\left(\operatorname{Id}_{n}-M\right) \preceq N-M \preceq 0.9\left(\operatorname{Id}_{n}-M\right) .
$$

Proof of Theorem 14. As notation, we denote the Frobenius inner product of two matrices $A, B \in \mathbb{R}^{n \times k}$ to be $\langle A, B\rangle=\operatorname{Tr}\left(A B^{T}\right)$.

By the previous lemma, we obtain from the first inequality $-0.9\left(\operatorname{Id}_{n}-M\right) \preceq N-M$:

$$
-0.9\left\langle\operatorname{Id}_{n}-M, M\right\rangle \leq\langle N-M, M\rangle
$$

since $M \succeq 0$. And as $\left\langle\operatorname{Id}_{n}, M\right\rangle=\langle M, M\rangle=r$, we obtain $r \leq\langle N, M\rangle$. Because $N=N_{\Omega}$, this implies that $\langle N, M\rangle=\left\langle N, M_{\Omega}\right\rangle$. Then:

$$
\begin{equation*}
\mathcal{A} \vdash r \leq\left\langle N, B B^{T}\right\rangle \tag{4}
\end{equation*}
$$

Again, by the previous lemma, we obtain from the second inequality $N-M \preceq 0.9\left(\operatorname{Id}_{n}-M\right)$,

$$
\left\langle N-M, B B^{T}\right\rangle \leq 0.9\left\langle\operatorname{Id}_{n}-M, B B^{T}\right\rangle
$$

Simplifying gives us:

$$
\begin{equation*}
\mathcal{A} \vdash\left\langle N, B B^{T}\right\rangle \leq 0.9 r+\left\langle M, B B^{T}\right\rangle \tag{5}
\end{equation*}
$$

Combining Equations 4 and 5 , we obtain $\mathcal{A} \vdash r \leq\left\langle M, B B^{T}\right\rangle$. On the other hand, because both M and $B B^{T}$ are rank- r, we have $\|M\|_{F}^{2}=\left\|B B^{T}\right\|_{F}^{2}=r$. Cauchy-Schwarz shows that $\mathcal{A} \vdash\left\langle M, B B^{T}\right\rangle \leq r$. It follows that:

$$
\mathcal{A} \vdash\left\|M-B B^{T}\right\|^{2}=0,
$$

proving identifiability using SOS proofs of degree at most 4.

2.2 Tensor completion

Tensor completion generalizes matrix completion. For 3-tensors, all known efficient algorithms require $r \cdot \widetilde{O}\left(n^{1.5}\right)$ observed entries, while the information-theoretic lower bound is $r \cdot O(n)$. It is an open question whether this gap is necessary. Again, we'll consider the more general case, where a tensor $T=\sum_{i=1}^{r} a_{i}^{\otimes 3}$ is rank- r with orthonormal components $a_{i} \in \mathbb{R}^{n}$ that are μ-incoherent. The following uses $r n^{1.5} \cdot(\mu \log n)^{O(1)}$ random entries of X.

Theorem 16 (Identifiability for tensor completion, [RSS2018]). Let $T=\sum_{i=1}^{r} a_{i}^{\otimes 3}$ be a rank r orthogonally decomposable tensor, with incoherence $\mu=\max _{i, j} n \cdot\left\langle a_{i}, e_{j}\right\rangle^{2}$. Let $\Omega \subset[n]^{3}$ be a random symmetric subset of size $|\Omega|=m$. Consider the following system of polynomial constraints:

$$
\mathcal{A}=\left\{\left(\sum_{i=1}^{r} b_{i}^{\otimes 3}\right)_{\Omega}=T_{\Omega}, B^{T} B=\operatorname{Id}_{n}\right\}
$$

Suppose $m \geq r n^{1.5} \cdot(\mu \log n)^{O(1)}$. Then, with high probability over the choice of Ω,

$$
\mathcal{A} \vdash_{O(1)}\left\{\left\|\sum_{i=1}^{r} b_{i}^{\otimes 3}-T\right\|_{F}^{2}=0\right\} .
$$

The proof technique is similar to the matrix completion case.

2.3 Clustering

Consider a collection of n data points drawn from a mixture of k Gaussians in $\mathbb{R}^{d}, \mathcal{N}\left(\mu_{1}, \operatorname{Id}_{d}\right), \ldots, \mathcal{N}\left(\mu_{k}, \operatorname{Id}_{d}\right)$. We can denote by $X^{*} \in\{0,1\}^{n \times n}$ be the k-clustering matrix where $X_{i j}^{*}=1$ iff y_{i} and y_{j} were drawn from the same Gaussian. The goal is to recover X^{*} from seeing the y_{i} 's.

Theorem 17 (Clustering with SOS). Given the above setting, there exists an algorithm that outputs a k clustering matrix $X \in\{0,1\}^{n \times n}$ in quasipolynomial time $n+(d k)^{(\log k)^{O(1)}}$ with the guarantees: if μ_{1}, \ldots, μ_{k} have separation $\min _{i \neq j}\left\|\mu_{i}-\mu_{j}\right\| \geq O(\sqrt{\log k})$ and $n \geq(d k)^{(\log k)^{O(1)}}$, then with high probability,

$$
\left\|X-X^{*}\right\|_{F}^{2} \leq 0.1 \cdot\left\|X^{*}\right\|_{F}^{2}
$$

More generally, the proof technique only requires bounded moments up to ℓ : for each cluster S_{κ}

$$
\left\|\underset{y \in S_{\kappa}}{\mathbb{E}}\left(1, y-\mu_{\kappa}\right)^{\otimes \ell}-\underset{g \sim \mathcal{N}\left(0, \mathrm{Id}_{d}\right)}{\mathbb{E}}(1, g)^{\otimes \ell}\right\|_{F}^{2} \leq \epsilon
$$

This gives rise to a polynomial constraint. Additionally, the constraint that X is a k-clustering matrix with respect to the S_{κ} 's gives a set of constraints $\mathcal{A}=\{p(X, Y, Z)=0\}$. On observing Y^{*}, we need derive an SOS proof from $\mathcal{A}\left(Y^{*}\right)=\left\{p\left(X, Y^{*}, Z\right)=0\right\}$ that with high probability for $\ell \leq(\log k)^{O(1)}$,

$$
\mathcal{A}\left(Y^{*}\right) \vdash_{\ell}\left\{\left\|X-X^{*}\right\|_{F}^{2} \leq 0.1 \cdot\left\|X^{*}\right\|_{F}^{2}\right\}
$$

Details are left to the reference, [HL2018], [KSS2018], [DKS2018].

3 Additional Techniques

3.1 Tensor decomposition

Many estimation problems can be reduced to tensor decomposition. For example, see [A+2014] for use of tensor decomposition to estimate problems like latent Dirichlet allocation, mixtures of Gaussians, etc. Concretely, given an order- k tensor, $T=\sum_{i=1}^{r} a_{i}^{\otimes k}$ with $a_{i} \in \mathbb{R}^{n}$, find $u \in \mathbb{R}^{n}$ that is close to some a_{i} in the sense of cosine similarity (up to signs):

$$
\max _{i \in[r]} \frac{\left|\left\langle a_{i}, u\right\rangle\right|}{\left\|a_{i}\right\| \cdot\|u\|} \geq 0.9
$$

We can use sums of squares to help solve this problem in polynomial time and $\widetilde{\Omega}\left(n^{1.5}\right)$ components drawn uniformly at random from the unit sphere.

The technique will reduce to the robust Jennrich's algorithm for tensor decomposition:
Theorem 18 (Robust Jennrich's algorithm, [MSS2016] [SS2017]). Let $T \in\left(\mathbb{R}^{n}\right)^{\otimes 3}$ be an order-3 tensor, and let $a_{1}, \ldots, a_{r} \in \mathbb{R}^{n}$ be unit vectors with orthogonality defect $\left\|\operatorname{Id}_{r}-A^{T} A\right\| \leq \epsilon$. Suppose:

$$
\left\|T-\sum_{i=1}^{r} a_{i}^{\otimes 3}\right\|_{F}^{2} \leq \epsilon \cdot r
$$

and that $\max \left\{\|T\|_{\{1,3\},\{2\}},\|T\|_{\{1\},\{2,3\}}\right\} \leq 10$. Then, there exists a randomized polynomial-time algorithm that outputs a unit vector $u \in \mathbb{R}^{n}$ such that:

$$
\max _{i \in[r]}\left\langle a_{i}, u\right\rangle \geq 0.9
$$

with at least inverse polynomial probability.
Notice that Jennrich's algorithm requires a small orthogonality defect. The strategy for using SOS is to estimate a noisy version of $\sum_{i=1}^{r} a_{i}^{\otimes 6}$ from seeing $\sum_{i=1}^{r} a_{i}^{\otimes 3}$. Then, viewing the order- 6 tensor as a 3 -tensor over $\mathbb{R}^{n^{2}}$, with squared components $a_{i} \otimes a_{i}$, these vectors may become linearly indepedent and nearly orthogonal when $r \ll n$ under certain conditions. Thus, our SOS problem is to estimate X from Y over the feasible domain:

$$
\mathcal{X}=\left\{(X, Y): X=\sum_{i=1}^{r} a_{i}^{\otimes 6}, Y=\sum_{i=1}^{r} a_{i}^{\otimes 3}\right\}
$$

References

[A+2014] Anandkumar, A., et al. "Tensor decompositions for learning latent variable models." The Journal of Machine Learning Research 15.1 (2014): 2773-2832.
[BS2016] Barak, B. Steurer, D. Proof, beliefs, and algorithms through the lens of sum-of-squares (2016).
[C2015] Chen, Y. "Incoherence-Optimal Matrix Completion." IEEE Trans. Information Theory 61.5 (2015): 2909-2923.
[DKS2018] Diakonikolas, I., Kane, D., Stewart, S.. "List-decodable robust mean estimation and learning mixtures of spherical gaussians." Proceedings of the 50 th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
[G2011] Gross, David. "Recovering low-rank matrices from few coefficients in any basis." IEEE Transactions on Information Theory 57.3 (2011): 1548-1566.
[HL2018] Hopkins, S., and Li, J. "Mixture models, robustness, and sum of squares proofs." Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
[KSS2018] Kothari, P., Steinhardt, J., Steurer, D. "Robust moment estimation and improved clustering via sum of squares." Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
[MSS2016] Ma, T., Shi, J., Steurer, D. "Polynomial-time tensor decompositions with sum-of-squares." Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 2016.
[L2001] Lasserre, J. "Global optimization with polynomials and the problem of moments." SIAM Journal on optimization 11.3 (2001): 796-817.
[P2000] Parrilo, P. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Diss. California Institute of Technology (2000).
[R2011] Recht, B. "A simpler approach to matrix completion." Journal of Machine Learning Research 12.Dec (2011): 3413-3430.
[RSS2018] Raghavendra, P., Schramm, T., Steurer, D. "High-dimensional estimation via sum-of-squares proofs." arXiv preprint arXiv:1807.11419 (2018).
[SS2017] Schramm, T., Steurer, D. "Fast and robust tensor decomposition with applications to dictionary learning." arXiv preprint arXiv:1706.08672 (2017).

[^0]: *Lecture follows [RSS2018] and heavily cites [BS2016].
 ${ }^{1}$ By Hilbert's Nullstellensatz, the radical of an ideal I generate by a set of functions \mathcal{A} over an algebraically closed field is the collection of functions whose zero set coincide with the zero set of \mathcal{A}. And indeed, we could think of \mathcal{C} as the consequence of a Positivstellensatz.

