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1 Review of SOS
First, we review SOS as a proof system for polynomials systems. Before proceeding to estimation problems,
let’s motivate SOS from a more general perspective to understand the techniques. For now, instead of focusing
on polynomials, we’ll look at all measurable functions over Rn. Let A be a collection of constraints on Rn,

A := {f1 ≥ 0, . . . , fm ≥ 0},

and let X ⊂ Rn be the feasible set where all constraints are satisfied. We make two remarks:

(i) the collection C of functions f that are nonnegative on X is equivalent to the collection of functions of
the following form:

f =
∑
i

g2
i fi + h2. (1)

This collection C seems somewhat reminiscent of the radical of A from algebraic geometry.1

(ii) let Eµ : F → R be a linear functional parametrized by µ, where µ : Rn → R has finite support,

E
µ
f :=

∑
x∈supp(µ)

µ(x)f(x) and E
µ

1 = 1. (2)

The collection of all such µ such that Eµ f ≥ 0 when f ∈ C are precisely the finitely-supported probability
distributions, where supp(µ) ⊂ X .

From these two facts, we could build a proof system. In particular, if f can be represented as in Equation 1,
we can say there is a sum of squares proof for f ≥ 0 when constrained to A, writing:

A ` {f ≥ 0}.

Further, we can think of µ satisfying Eµ f ≥ 0 for all f ∈ C as a witness to the satisfiability of A, writing:

µ � A.

Notice that if we can prove that there is a unique point x∗ ∈ Rn that satisfies A, i.e. A ` {x = x∗}, then
µ � A implies µ = δx, the Dirac distribution whose mass is concentrated on x. And so, if there were an
efficient way to obtain the linear functional Eµ when given A, then we could efficiently solve for x∗. Of course,
this is asking for too much in this general case, but perhaps not in the case restricted to polynomials.

∗Lecture follows [RSS2018] and heavily cites [BS2016].
1By Hilbert’s Nullstellensatz, the radical of an ideal I generate by a set of functions A over an algebraically closed field is the

collection of functions whose zero set coincide with the zero set of A. And indeed, we could think of C as the consequence of a
Positivstellensatz.

1



1.1 Formalities

We’ll now give the polynomial framework in which SOS operates. All functions we consider will come from
R[X1, . . . , Xn], real polynomials with n indeterminants. For brevity, we’ll condense (X1, . . . , Xn) to just X,
and let R[X]≤d be the collection of polynomials p(X1, . . . , Xn) with degree at most d.

Definition 1. Let A = {p1 ≥ 0, . . . , pm ≥ 0} be a collection of polynomial constraints. We say that A is a
collection of axioms. We say that there is a sum-of-squares proof of q ≥ 0 from A if:(∑

k

c2k

)
q =

∑
i

a2
i pi +

∑
j

b2j ,

where ai, bj , ck ∈ R[X] and the sums are finite. The degree of the sum-of-squares proof is the degree d of the
polynomial

∑
i a

2
i pi +

∑
j b

2
j . We write A `d {q ≥ 0}.

Fact 2 ([P2000], [L2001]). If a degree-d sum-of-squares proof exists, then semidefinite programming (SDP)
can find a proof in nO(d) time. As such an algorithm for each even degree d, we call this family of algorithms
the sum-of-squares SDP hierarchy or the Laserre hierarchy.

Proposition 3. If there is a degree-d sum-of-squares proof that q ≥ 0 given A, i.e. A `d {q ≥ 0}, then
q(x) ≥ 0 for all x ∈ Rn satisfying A.

Definition 4. For a system of polynomial constraints A, a degree-d pseudo-expectation is a linear functional
Ẽ : R[X]≤d → R satisfying the following:

(i) Ẽ 1 = 1

(ii) Ẽ f ≥ 0 whenever f ∈ R[X]≤d is of the form:

f =
∑
i

a2
i pi +

∑
j

b2j .

Fact 5. If for a polynomial system A, there exists a degree-d pseudo-expectation, then the dual SDP computes
a degree-d pseudo-expectation in time nO(d).

Remark 6. Notice that the evaluation functional evx : R[X]≤d → R is linear, defined so that evx(f) ≡ f(x).
Furthermore, since R[X]≤d is a finite linear space, its dual is also finite dimensional. It follows that every
degree-d pseudo-expectation has representation of the form:

Ẽ ≡
k∑
i=1

µievxi .

In particular, we can think of µ : Rn → R as a pseudo-distribution on Rn, supported on the xi’s, and where
the mass on the point xi is µi. Such a representation is not unique, but given µ, we can write:

Ẽ
µ
f :=

∑
x∈supp(µ)

µ(x)f(x).

Example 7. In contrast to the motivating discussion over all functions, the support of µ is not restricted to
the feasible set of A, nor are the ‘pseudo-probability masses’ necessarily nonnegative. For example, consider
the degree-2 pseudo-distribution µ : R[X]≤2 → R, where:

µ(x) =


1 x = ±1

−1 x = 0

0 o.w.

2



Indeed, for all f = a(x+ b), we see that Ẽµ f2 = a2(2 + b2) ≥ 0. Note that this is just one representation of
the linear functional Ẽ such that Ẽ 1 = 1, ẼX = 0, and ẼX2 = 2.

We can define degree-d pseudo-distributions in generally by setting A = ∅.

Definition 8. A function µ : Rn → R is a degree-d pseudo-distribution if for all polynomials f such that
deg(f2) ≤ d, the pseudo-expectation with respect to µ is nonnegative, Ẽµ f2 ≥ 0. Let A be a collection of
axioms. We say that µ satisfies A if Ẽµ is a pseudo-expectation consistent with A. We write µ � A.

Lemma 9 (Soundness, [B2016]). Let µ be a pseudo-distribution and let A,B be systems of polynomial
constraints. If µ � A and A ` B, then µ � B.

Lemma 10 (Cauchy-Schwarz, [RSS2018]). Let Ẽ be a degree-d pseudo-expectation. Let p, q ∈ R[X] with
degree at most d/2. Then:

Ẽ[pq] ≤
(
Ẽ p2

)1/2 (
Ẽ q2

)1/2
.

This will be enough to set up the framework for estimation problems.

2 Estimation Problems
We can formalize an estimation problem as consisting of a set X ⊂ Rn × Rm of pairs (x, y). We say that x is
the parameter and y is the measurement. Out of this set of possibilities, one pair (x∗, y∗) is selected, but we
only get access the measurement y∗. The goal is to (approximately) recover x∗.

Definition 11. For a pair (x, y) ∈ X , we say that y identifies x exactly when (x′, y) ∈ X iff x′ = x. We say
that y identifies x up to ε when (x′, y) ∈ X iff ‖x− x′‖ ≤ ε.

If we have estimation problems that can be described with polynomials, and we measure y∗, then we can
write X as the feasible region to a collection of polynomials

A = {p1(X, y∗) ≥ 0, . . . , pm(X, y∗) ≥ 0}.

Let δx∗ be the (pseudo-)distribution with mass concentrated at x∗. It follows that Ẽδx∗ is a pseudo-expectation
consistent with A. It would be great if we could retrieve Ẽδx∗ , since that would immediately give us x∗,
solving the estimation problem. However, running a SDP with constraints A is not guaranteed to return this
particular pseudo-expectation. It may not matter, if we can give a low-degree SOS proof of identifiability:

A `d {‖X − x∗‖2 ≤ ε},

where ε is possibly 0 if x∗ is exactly identifiable. Then, we’re guaranteed an efficient algorithm that retrieves
x∗ within ε+ 2−nd . We state this slightly more generally by allowing a third auxilary variable that can often
simplify the description of X :

Theorem 12 (Meta-theorem for efficient estimation [RSS2018]). Let p ∈ R[X,Y, Z] and let (x∗, y∗, z∗)
satisfy p = 0. Let A = {p(X, y∗, Z) = 0}. Suppose:

A `d {‖X − x∗‖2 ≤ ε}.

Then, every degree-d pseudo-distribution µ consistent with A satisfies:∥∥∥∥x∗ − Ẽ
µ
X

∥∥∥∥2
≤ ε. (3)

Furthermore, for every d ∈ N, there exists an nO(d)-time algorithm with bit-complexity at most nd that returns
and estimate x̂(y∗) such that ‖x∗ − x̂(y∗)‖2 ≤ ε+ 2−nd .
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Proof. By assumption, µ is consistent withA, so that µ � A. When we combine this withA ` {‖X−x∗‖2 ≤ ε},
soundness implies µ ` {‖X − x∗‖2 ≤ ε}. It follows that:

Ẽ
µ
‖X − x∗‖2 ≤ ε.

On the other hand, Cauchy-Schwarz implies:∥∥∥∥Ẽµ(X − x∗)
∥∥∥∥2

= Ẽ
µ

〈
X − x∗, Ẽ

µ
(X − x∗)

〉
≤
∥∥∥∥Ẽµ(X − x∗)

∥∥∥∥ · Ẽµ ‖X − x∗‖2︸ ︷︷ ︸
ε

,

proving Equation 3.
To get an efficient algorithm, we just need to obtain Ẽµ using the SDP, which takes nO(d) time, and with

bit complexity nd, we can ensure that our computation x̂ is within 2−nd of ẼµX.

Let’s see how this framework plays out in a few examples.

2.1 Matrix completion

In the general problem, letM ∈ Rn×n be a rank-r matrix. We’re given access to valuesMΩ, where Ω ⊂ [n]×[n]
is a subset of indices. The goal is then to recover M from MΩ. It turns out that we can often recover M
almost exactly with high probability under certain conditions.

Definition 13. Let v1, . . . , vm ∈ Rn be unit vectors. We say that they are µ-incoherent if for all vi and for
all standard basis vectors ej,

〈vi, ej〉2 ≤
µ

n
.

For example, random unit vectors from the sphere are µ-incoherent when µ ≤ O(logn) with high
probability. When the right and left singular values of M are µ-incoherent, then as long as MΩ contains
at least m ≥ µrn ·O(logn)2 entries, we can recover M exactly with high probability. This bound on m is
almost optimal, since an n× n rank-r matrix has Ω(rn) degrees of freedom, for each singular vector.

Let’s consider the simplified case where M is a rank-r projection:

Theorem 14 (Identifiability for matrix completion, [RSS2018]). Let M =
∑r
i=1 aia

T
i be an r-dimensional

projector, where ai ∈ Rn are orthonormal vectors with incoherence µ = maxi,j n · 〈ai, ej〉2. Let Ω ⊂ [n]× [n]
be a random symmetric subset of size |Ω| = m. Consider the following system of polynomial constraints:

A = {(BBT )Ω = MΩ, B
TB =r}.

If m ≥ µrn ·O(logn)2, then with high probability over choice of Ω,

A `4 {‖BBT −M‖F = 0}.

The proof will utilize the following lemma, whose proof we’ll leave to the literature.

Lemma 15 ([G2011], [R2011], [C2015]). Let M,ai as before, and in particular, the ai’s are µ-incoherent.
Let Ω ⊂ [n]× [n] be the complement of Ω. Then, with high probability over the choice of Ω, there exists a
symmetric matrix N such that NΩ = 0, and

−0.9(Idn −M) � N −M � 0.9(Idn −M).
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Proof of Theorem 14. As notation, we denote the Frobenius inner product of two matrices A,B ∈ Rn×k to
be 〈A,B〉 = Tr(ABT ).

By the previous lemma, we obtain from the first inequality −0.9(Idn −M) � N −M :

−0.9〈Idn −M,M〉 ≤ 〈N −M,M〉,

since M � 0. And as 〈Idn,M〉 = 〈M,M〉 = r, we obtain r ≤ 〈N,M〉. Because N = NΩ, this implies that
〈N,M〉 = 〈N,MΩ〉. Then:

A ` r ≤ 〈N,BBT 〉. (4)

Again, by the previous lemma, we obtain from the second inequality N −M � 0.9(Idn −M),

〈N −M,BBT 〉 ≤ 0.9〈Idn −M,BBT 〉.

Simplifying gives us:
A ` 〈N,BBT 〉 ≤ 0.9r + 〈M,BBT 〉. (5)

Combining Equations 4 and 5, we obtain A ` r ≤ 〈M,BBT 〉. On the other hand, because both M and BBT

are rank-r, we have ‖M‖2F = ‖BBT ‖2F = r. Cauchy-Schwarz shows that A ` 〈M,BBT 〉 ≤ r. It follows that:

A ` ‖M −BBT ‖2 = 0,

proving identifiability using SOS proofs of degree at most 4.

2.2 Tensor completion

Tensor completion generalizes matrix completion. For 3-tensors, all known efficient algorithms require
r · Õ(n1.5) observed entries, while the information-theoretic lower bound is r ·O(n). It is an open question
whether this gap is necessary. Again, we’ll consider the more general case, where a tensor T =

∑r
i=1 a

⊗3
i is

rank-r with orthonormal components ai ∈ Rn that are µ-incoherent. The following uses rn1.5 · (µ logn)O(1)

random entries of X.

Theorem 16 (Identifiability for tensor completion, [RSS2018]). Let T =
∑r
i=1 a

⊗3
i be a rank r orthogonally

decomposable tensor, with incoherence µ = maxi,j n · 〈ai, ej〉2. Let Ω ⊂ [n]3 be a random symmetric subset of
size |Ω| = m. Consider the following system of polynomial constraints:

A =
{(

r∑
i=1

b⊗3
i

)
Ω

= TΩ, B
TB = Idn

}
.

Suppose m ≥ rn1.5 · (µ logn)O(1). Then, with high probability over the choice of Ω,

A `O(1)


∥∥∥∥∥

r∑
i=1

b⊗3
i − T

∥∥∥∥∥
2

F

= 0

 .

The proof technique is similar to the matrix completion case.

2.3 Clustering

Consider a collection of n data points drawn from a mixture of k Gaussians in Rd, N (µ1, Idd), . . . ,N (µk, Idd).
We can denote by X∗ ∈ {0, 1}n×n be the k-clustering matrix where X∗ij = 1 iff yi and yj were drawn from
the same Gaussian. The goal is to recover X∗ from seeing the yi’s.
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Theorem 17 (Clustering with SOS). Given the above setting, there exists an algorithm that outputs a k-
clustering matrix X ∈ {0, 1}n×n in quasipolynomial time n+ (dk)(log k)O(1) with the guarantees: if µ1, . . . , µk

have separation mini 6=j ‖µi − µj‖ ≥ O(
√

log k) and n ≥ (dk)(log k)O(1) , then with high probability,

‖X −X∗‖2F ≤ 0.1 · ‖X∗‖2F .

More generally, the proof technique only requires bounded moments up to `: for each cluster Sκ∥∥∥∥ E
y∈Sκ

(1, y − µκ)⊗` − E
g∼N (0,Idd)

(1, g)⊗`
∥∥∥∥2

F

≤ ε.

This gives rise to a polynomial constraint. Additionally, the constraint that X is a k-clustering matrix with
respect to the Sκ’s gives a set of constraints A = {p(X,Y, Z) = 0}. On observing Y ∗, we need derive an SOS
proof from A(Y ∗) = {p(X,Y ∗, Z) = 0} that with high probability for ` ≤ (log k)O(1),

A(Y ∗) ``
{
‖X −X∗‖2F ≤ 0.1 · ‖X∗‖2F

}
.

Details are left to the reference, [HL2018], [KSS2018], [DKS2018].

3 Additional Techniques

3.1 Tensor decomposition

Many estimation problems can be reduced to tensor decomposition. For example, see [A+2014] for use
of tensor decomposition to estimate problems like latent Dirichlet allocation, mixtures of Gaussians, etc.
Concretely, given an order-k tensor, T =

∑r
i=1 a

⊗k
i with ai ∈ Rn, find u ∈ Rn that is close to some ai in the

sense of cosine similarity (up to signs):

max
i∈[r]

|〈ai, u〉|
‖ai‖ · ‖u‖

≥ 0.9.

We can use sums of squares to help solve this problem in polynomial time and Ω̃(n1.5) components drawn
uniformly at random from the unit sphere.

The technique will reduce to the robust Jennrich’s algorithm for tensor decomposition:

Theorem 18 (Robust Jennrich’s algorithm, [MSS2016] [SS2017]). Let T ∈ (Rn)⊗3 be an order-3 tensor, and
let a1, . . . , ar ∈ Rn be unit vectors with orthogonality defect ‖Idr −ATA‖ ≤ ε. Suppose:∥∥∥∥∥T −

r∑
i=1

a⊗3
i

∥∥∥∥∥
2

F

≤ ε · r,

and that max{‖T‖{1,3},{2}, ‖T‖{1},{2,3}} ≤ 10. Then, there exists a randomized polynomial-time algorithm
that outputs a unit vector u ∈ Rn such that:

max
i∈[r]
〈ai, u〉 ≥ 0.9,

with at least inverse polynomial probability.

Notice that Jennrich’s algorithm requires a small orthogonality defect. The strategy for using SOS
is to estimate a noisy version of

∑r
i=1 a

⊗6
i from seeing

∑r
i=1 a

⊗3
i . Then, viewing the order-6 tensor as a

3-tensor over Rn2 , with squared components ai⊗ ai, these vectors may become linearly indepedent and nearly
orthogonal when r � n under certain conditions. Thus, our SOS problem is to estimate X from Y over the
feasible domain:

X =
{

(X,Y ) : X =
r∑
i=1

a⊗6
i , Y =

r∑
i=1

a⊗3
i

}
.
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