Sums of Squares for Estimation Problems^{*}

Aaron Geelon So

November 13, 2018

1 Review of SOS

First, we review SOS as a proof system for polynomials systems. Before proceeding to estimation problems, let's motivate SOS from a more general perspective to understand the techniques. For now, instead of focusing on polynomials, we'll look at all measurable functions over \mathbb{R}^n . Let \mathcal{A} be a collection of constraints on \mathbb{R}^n ,

$$\mathcal{A} := \{f_1 \ge 0, \dots, f_m \ge 0\}$$

and let $\mathcal{X} \subset \mathbb{R}^n$ be the feasible set where all constraints are satisfied. We make two remarks:

(i) the collection C of functions f that are nonnegative on \mathcal{X} is equivalent to the collection of functions of the following form:

$$f = \sum_{i} g_i^2 f_i + h^2.$$
 (1)

This collection \mathcal{C} seems somewhat reminiscent of the radical of \mathcal{A} from algebraic geometry.¹

(ii) let $\mathbb{E}_{\mu} : \mathcal{F} \to \mathbb{R}$ be a linear functional parametrized by μ , where $\mu : \mathbb{R}^n \to \mathbb{R}$ has finite support,

$$\mathbb{E}_{\mu} f := \sum_{x \in \text{supp}(\mu)} \mu(x) f(x) \quad \text{and} \quad \mathbb{E}_{\mu} 1 = 1.$$
(2)

The collection of all such μ such that $\mathbb{E}_{\mu} f \geq 0$ when $f \in \mathcal{C}$ are precisely the finitely-supported probability distributions, where $\operatorname{supp}(\mu) \subset \mathcal{X}$.

From these two facts, we could build a proof system. In particular, if f can be represented as in Equation 1, we can say there is a *sum of squares proof* for $f \ge 0$ when constrained to \mathcal{A} , writing:

$$\mathcal{A} \vdash \{ f \ge 0 \}.$$

Further, we can think of μ satisfying $\mathbb{E}_{\mu} f \geq 0$ for all $f \in \mathcal{C}$ as a witness to the satisfiability of \mathcal{A} , writing:

 $\mu \models \mathcal{A}.$

Notice that if we can prove that there is a unique point $x^* \in \mathbb{R}^n$ that satisfies \mathcal{A} , i.e. $\mathcal{A} \vdash \{x = x^*\}$, then $\mu \models \mathcal{A}$ implies $\mu = \delta_x$, the Dirac distribution whose mass is concentrated on x. And so, if there were an efficient way to obtain the linear functional \mathbb{E}_{μ} when given \mathcal{A} , then we could efficiently solve for x^* . Of course, this is asking for too much in this general case, but perhaps not in the case restricted to polynomials.

^{*}Lecture follows [RSS2018] and heavily cites [BS2016].

¹By Hilbert's Nullstellensatz, the radical of an ideal I generate by a set of functions \mathcal{A} over an algebraically closed field is the collection of functions whose zero set coincide with the zero set of \mathcal{A} . And indeed, we could think of \mathcal{C} as the consequence of a Positivstellensatz.

1.1 Formalities

We'll now give the polynomial framework in which SOS operates. All functions we consider will come from $\mathbb{R}[X_1, \ldots, X_n]$, real polynomials with *n* indeterminants. For brevity, we'll condense (X_1, \ldots, X_n) to just *X*, and let $\mathbb{R}[X]_{\leq d}$ be the collection of polynomials $p(X_1, \ldots, X_n)$ with degree at most *d*.

Definition 1. Let $\mathcal{A} = \{p_1 \ge 0, \dots, p_m \ge 0\}$ be a collection of polynomial constraints. We say that \mathcal{A} is a collection of axioms. We say that there is a sum-of-squares proof of $q \ge 0$ from \mathcal{A} if:

$$\left(\sum_{k} c_k^2\right) q = \sum_{i} a_i^2 p_i + \sum_{j} b_j^2,$$

where $a_i, b_j, c_k \in \mathbb{R}[X]$ and the sums are finite. The degree of the sum-of-squares proof is the degree d of the polynomial $\sum_i a_i^2 p_i + \sum_j b_j^2$. We write $\mathcal{A} \vdash_d \{q \ge 0\}$.

Fact 2 ([P2000], [L2001]). If a degree-d sum-of-squares proof exists, then semidefinite programming (SDP) can find a proof in $n^{O(d)}$ time. As such an algorithm for each even degree d, we call this family of algorithms the sum-of-squares SDP hierarchy or the Laserre hierarchy.

Proposition 3. If there is a degree-d sum-of-squares proof that $q \ge 0$ given \mathcal{A} , i.e. $\mathcal{A} \vdash_d \{q \ge 0\}$, then $q(x) \ge 0$ for all $x \in \mathbb{R}^n$ satisfying \mathcal{A} .

Definition 4. For a system of polynomial constraints \mathcal{A} , a degree-d pseudo-expectation is a linear functional $\widetilde{\mathbb{E}} : \mathbb{R}[X]_{\leq d} \to \mathbb{R}$ satisfying the following:

- (i) $\widetilde{\mathbb{E}} 1 = 1$
- (ii) $\widetilde{\mathbb{E}} f \geq 0$ whenever $f \in \mathbb{R}[X]_{\leq d}$ is of the form:

$$f = \sum_i a_i^2 p_i + \sum_j b_j^2.$$

Fact 5. If for a polynomial system \mathcal{A} , there exists a degree-d pseudo-expectation, then the dual SDP computes a degree-d pseudo-expectation in time $n^{O(d)}$.

Remark 6. Notice that the evaluation functional $ev_x : \mathbb{R}[X]_{\leq d} \to \mathbb{R}$ is linear, defined so that $ev_x(f) \equiv f(x)$. Furthermore, since $\mathbb{R}[X]_{\leq d}$ is a finite linear space, its dual is also finite dimensional. It follows that every degree-d pseudo-expectation has representation of the form:

$$\widetilde{\mathbb{E}} \equiv \sum_{i=1}^{k} \mu_i \mathrm{ev}_{x_i}.$$

In particular, we can think of $\mu : \mathbb{R}^n \to \mathbb{R}$ as a pseudo-distribution on \mathbb{R}^n , supported on the x_i 's, and where the mass on the point x_i is μ_i . Such a representation is not unique, but given μ , we can write:

$$\widetilde{\mathbb{E}}_{\mu} f := \sum_{x \in \text{supp}(\mu)} \mu(x) f(x).$$

Example 7. In contrast to the motivating discussion over all functions, the support of μ is not restricted to the feasible set of \mathcal{A} , nor are the 'pseudo-probability masses' necessarily nonnegative. For example, consider the degree-2 pseudo-distribution $\mu : \mathbb{R}[X]_{\leq 2} \to \mathbb{R}$, where:

$$\mu(x) = \begin{cases} 1 & x = \pm 1 \\ -1 & x = 0 \\ 0 & \text{o.w.} \end{cases}$$

Indeed, for all f = a(x + b), we see that $\widetilde{\mathbb{E}}_{\mu} f^2 = a^2(2 + b^2) \ge 0$. Note that this is just one representation of the linear functional $\widetilde{\mathbb{E}}$ such that $\widetilde{\mathbb{E}} 1 = 1$, $\widetilde{\mathbb{E}} X = 0$, and $\widetilde{\mathbb{E}} X^2 = 2$.

We can define degree-d pseudo-distributions in generally by setting $\mathcal{A} = \emptyset$.

Definition 8. A function $\mu : \mathbb{R}^n \to \mathbb{R}$ is a degree-*d* pseudo-distribution if for all polynomials *f* such that $\deg(f^2) \leq d$, the pseudo-expectation with respect to μ is nonnegative, $\widetilde{\mathbb{E}}_{\mu} f^2 \geq 0$. Let \mathcal{A} be a collection of axioms. We say that μ satisfies \mathcal{A} if $\widetilde{\mathbb{E}}_{\mu}$ is a pseudo-expectation consistent with \mathcal{A} . We write $\mu \models \mathcal{A}$.

Lemma 9 (Soundness, [B2016]). Let μ be a pseudo-distribution and let \mathcal{A}, \mathcal{B} be systems of polynomial constraints. If $\mu \models \mathcal{A}$ and $\mathcal{A} \vdash \mathcal{B}$, then $\mu \models \mathcal{B}$.

Lemma 10 (Cauchy-Schwarz, [RSS2018]). Let $\widetilde{\mathbb{E}}$ be a degree-d pseudo-expectation. Let $p, q \in \mathbb{R}[X]$ with degree at most d/2. Then:

$$\widetilde{\mathbb{E}}[pq] \le \left(\widetilde{\mathbb{E}} \, p^2\right)^{1/2} \left(\widetilde{\mathbb{E}} \, q^2\right)^{1/2}.$$

This will be enough to set up the framework for estimation problems.

2 Estimation Problems

We can formalize an *estimation problem* as consisting of a set $\mathcal{X} \subset \mathbb{R}^n \times \mathbb{R}^m$ of pairs (x, y). We say that x is the *parameter* and y is the *measurement*. Out of this set of possibilities, one pair (x^*, y^*) is selected, but we only get access the measurement y^* . The goal is to (approximately) recover x^* .

Definition 11. For a pair $(x, y) \in \mathcal{X}$, we say that y identifies x exactly when $(x', y) \in \mathcal{X}$ iff x' = x. We say that y identifies x up to ϵ when $(x', y) \in \mathcal{X}$ iff $||x - x'|| \leq \epsilon$.

If we have estimation problems that can be described with polynomials, and we measure y^* , then we can write \mathcal{X} as the feasible region to a collection of polynomials

$$\mathcal{A} = \{ p_1(X, y^*) \ge 0, \dots, p_m(X, y^*) \ge 0 \}.$$

Let δ_{x^*} be the (pseudo-)distribution with mass concentrated at x^* . It follows that $\widetilde{\mathbb{E}}_{\delta_{x^*}}$ is a pseudo-expectation consistent with \mathcal{A} . It would be great if we could retrieve $\widetilde{\mathbb{E}}_{\delta_{x^*}}$, since that would immediately give us x^* , solving the estimation problem. However, running a SDP with constraints \mathcal{A} is not guaranteed to return this particular pseudo-expectation. It may not matter, if we can give a low-degree SOS proof of identifiability:

$$\mathcal{A} \vdash_d \{ \|X - x^*\|^2 \le \epsilon \},\$$

where ϵ is possibly 0 if x^* is exactly identifiable. Then, we're guaranteed an efficient algorithm that retrieves x^* within $\epsilon + 2^{-n^d}$. We state this slightly more generally by allowing a third auxiliary variable that can often simplify the description of \mathcal{X} :

Theorem 12 (Meta-theorem for efficient estimation [RSS2018]). Let $p \in \mathbb{R}[X, Y, Z]$ and let (x^*, y^*, z^*) satisfy p = 0. Let $\mathcal{A} = \{p(X, y^*, Z) = 0\}$. Suppose:

$$\mathcal{A} \vdash_d \{ \|X - x^*\|^2 \le \epsilon \}.$$

Then, every degree-d pseudo-distribution μ consistent with A satisfies:

$$\left\|x^* - \widetilde{\mathbb{E}}_{\mu} X\right\|^2 \le \epsilon.$$
(3)

Furthermore, for every $d \in \mathbb{N}$, there exists an $n^{O(d)}$ -time algorithm with bit-complexity at most n^d that returns and estimate $\hat{x}(y^*)$ such that $\|x^* - \hat{x}(y^*)\|^2 \leq \epsilon + 2^{-n^d}$.

Proof. By assumption, μ is consistent with \mathcal{A} , so that $\mu \models \mathcal{A}$. When we combine this with $\mathcal{A} \vdash \{ \|X - x^*\|^2 \le \epsilon \}$, soundness implies $\mu \vdash \{ \|X - x^*\|^2 \le \epsilon \}$. It follows that:

$$\widetilde{\mathbb{E}}_{\mu} \|X - x^*\|^2 \le \epsilon.$$

On the other hand, Cauchy-Schwarz implies:

$$\left\|\widetilde{\mathbb{E}}_{\mu}(X-x^{*})\right\|^{2} = \widetilde{\mathbb{E}}_{\mu}\left\langle X-x^{*}, \widetilde{\mathbb{E}}(X-x^{*})\right\rangle \leq \left\|\widetilde{\mathbb{E}}_{\mu}(X-x^{*})\right\| \cdot \underbrace{\widetilde{\mathbb{E}}}_{\mu} \|X-x^{*}\|^{2},$$

proving Equation 3.

To get an efficient algorithm, we just need to obtain \widetilde{E}_{μ} using the SDP, which takes $n^{O(d)}$ time, and with bit complexity n^d , we can ensure that our computation \hat{x} is within 2^{-n^d} of $\widetilde{\mathbb{E}}_{\mu} X$.

Let's see how this framework plays out in a few examples.

2.1 Matrix completion

In the general problem, let $M \in \mathbb{R}^{n \times n}$ be a rank-*r* matrix. We're given access to values M_{Ω} , where $\Omega \subset [n] \times [n]$ is a subset of indices. The goal is then to recover M from M_{Ω} . It turns out that we can often recover M almost exactly with high probability under certain conditions.

Definition 13. Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be unit vectors. We say that they are μ -incoherent if for all v_i and for all standard basis vectors e_j ,

$$\langle v_i, e_j \rangle^2 \le \frac{\mu}{n}.$$

For example, random unit vectors from the sphere are μ -incoherent when $\mu \leq O(\log n)$ with high probability. When the right and left singular values of M are μ -incoherent, then as long as M_{Ω} contains at least $m \geq \mu rn \cdot O(\log n)^2$ entries, we can recover M exactly with high probability. This bound on m is almost optimal, since an $n \times n$ rank-r matrix has $\Omega(rn)$ degrees of freedom, for each singular vector.

Let's consider the simplified case where M is a rank-r projection:

Theorem 14 (Identifiability for matrix completion, [RSS2018]). Let $M = \sum_{i=1}^{r} a_i a_i^T$ be an *r*-dimensional projector, where $a_i \in \mathbb{R}^n$ are orthonormal vectors with incoherence $\mu = \max_{i,j} n \cdot \langle a_i, e_j \rangle^2$. Let $\Omega \subset [n] \times [n]$ be a random symmetric subset of size $|\Omega| = m$. Consider the following system of polynomial constraints:

$$\mathcal{A} = \{ (BB^T)_{\Omega} = M_{\Omega}, B^T B =_r \}.$$

If $m \ge \mu rn \cdot O(\log n)^2$, then with high probability over choice of Ω ,

$$\mathcal{A} \vdash_{4} \{ \|BB^{T} - M\|_{F} = 0 \}.$$

The proof will utilize the following lemma, whose proof we'll leave to the literature.

Lemma 15 ([G2011], [R2011], [C2015]). Let M, a_i as before, and in particular, the a_i 's are μ -incoherent. Let $\overline{\Omega} \subset [n] \times [n]$ be the complement of Ω . Then, with high probability over the choice of Ω , there exists a symmetric matrix N such that $N_{\Omega} = 0$, and

$$-0.9(\mathrm{Id}_n - M) \preceq N - M \preceq 0.9(\mathrm{Id}_n - M).$$

Proof of Theorem 14. As notation, we denote the Frobenius inner product of two matrices $A, B \in \mathbb{R}^{n \times k}$ to be $\langle A, B \rangle = \text{Tr}(AB^T)$.

By the previous lemma, we obtain from the first inequality $-0.9(\mathrm{Id}_n - M) \preceq N - M$:

$$-0.9\langle \mathrm{Id}_n - M, M \rangle \le \langle N - M, M \rangle,$$

since $M \succeq 0$. And as $\langle \mathrm{Id}_n, M \rangle = \langle M, M \rangle = r$, we obtain $r \leq \langle N, M \rangle$. Because $N = N_{\Omega}$, this implies that $\langle N, M \rangle = \langle N, M_{\Omega} \rangle$. Then:

$$\mathcal{A} \vdash r \le \langle N, BB^T \rangle. \tag{4}$$

Again, by the previous lemma, we obtain from the second inequality $N - M \leq 0.9(\mathrm{Id}_n - M)$,

$$\langle N - M, BB^T \rangle \le 0.9 \langle \mathrm{Id}_n - M, BB^T \rangle.$$

Simplifying gives us:

$$\mathcal{A} \vdash \langle N, BB^T \rangle \le 0.9r + \langle M, BB^T \rangle. \tag{5}$$

Combining Equations 4 and 5, we obtain $\mathcal{A} \vdash r \leq \langle M, BB^T \rangle$. On the other hand, because both M and BB^T are rank-r, we have $\|M\|_F^2 = \|BB^T\|_F^2 = r$. Cauchy-Schwarz shows that $\mathcal{A} \vdash \langle M, BB^T \rangle \leq r$. It follows that:

$$\mathcal{A} \vdash \|M - BB^T\|^2 = 0,$$

proving identifiability using SOS proofs of degree at most 4.

2.2 Tensor completion

Tensor completion generalizes matrix completion. For 3-tensors, all known efficient algorithms require $r \cdot \widetilde{O}(n^{1.5})$ observed entries, while the information-theoretic lower bound is $r \cdot O(n)$. It is an open question whether this gap is necessary. Again, we'll consider the more general case, where a tensor $T = \sum_{i=1}^{r} a_i^{\otimes 3}$ is rank-*r* with orthonormal components $a_i \in \mathbb{R}^n$ that are μ -incoherent. The following uses $rn^{1.5} \cdot (\mu \log n)^{O(1)}$ random entries of X.

Theorem 16 (Identifiability for tensor completion, [RSS2018]). Let $T = \sum_{i=1}^{r} a_i^{\otimes 3}$ be a rank r orthogonally decomposable tensor, with incoherence $\mu = \max_{i,j} n \cdot \langle a_i, e_j \rangle^2$. Let $\Omega \subset [n]^3$ be a random symmetric subset of size $|\Omega| = m$. Consider the following system of polynomial constraints:

$$\mathcal{A} = \left\{ \left(\sum_{i=1}^r b_i^{\otimes 3} \right)_{\Omega} = T_{\Omega}, B^T B = \mathrm{Id}_n \right\}.$$

Suppose $m \ge rn^{1.5} \cdot (\mu \log n)^{O(1)}$. Then, with high probability over the choice of Ω ,

$$\mathcal{A} \vdash_{O(1)} \left\{ \left\| \sum_{i=1}^r b_i^{\otimes 3} - T \right\|_F^2 = 0 \right\}.$$

The proof technique is similar to the matrix completion case.

2.3 Clustering

Consider a collection of n data points drawn from a mixture of k Gaussians in \mathbb{R}^d , $\mathcal{N}(\mu_1, \mathrm{Id}_d), \ldots, \mathcal{N}(\mu_k, \mathrm{Id}_d)$. We can denote by $X^* \in \{0, 1\}^{n \times n}$ be the k-clustering matrix where $X_{ij}^* = 1$ iff y_i and y_j were drawn from the same Gaussian. The goal is to recover X^* from seeing the y_i 's.

Theorem 17 (Clustering with SOS). Given the above setting, there exists an algorithm that outputs a kclustering matrix $X \in \{0,1\}^{n \times n}$ in quasipolynomial time $n + (dk)^{(\log k)^{O(1)}}$ with the guarantees: if μ_1, \ldots, μ_k have separation $\min_{i \neq j} \|\mu_i - \mu_j\| \ge O(\sqrt{\log k})$ and $n \ge (dk)^{(\log k)^{O(1)}}$, then with high probability,

$$||X - X^*||_F^2 \le 0.1 \cdot ||X^*||_F^2.$$

More generally, the proof technique only requires bounded moments up to ℓ : for each cluster S_{κ}

$$\left\| \underset{y \in S_{\kappa}}{\mathbb{E}} (1, y - \mu_{\kappa})^{\otimes \ell} - \underset{g \sim \mathcal{N}(0, \mathrm{Id}_{d})}{\mathbb{E}} (1, g)^{\otimes \ell} \right\|_{F}^{2} \leq \epsilon.$$

This gives rise to a polynomial constraint. Additionally, the constraint that X is a k-clustering matrix with respect to the S_{κ} 's gives a set of constraints $\mathcal{A} = \{p(X, Y, Z) = 0\}$. On observing Y^* , we need derive an SOS proof from $\mathcal{A}(Y^*) = \{p(X, Y^*, Z) = 0\}$ that with high probability for $\ell \leq (\log k)^{O(1)}$,

 $\mathcal{A}(Y^*) \vdash_{\ell} \left\{ \|X - X^*\|_F^2 \le 0.1 \cdot \|X^*\|_F^2 \right\}.$

Details are left to the reference, [HL2018], [KSS2018], [DKS2018].

3 Additional Techniques

3.1 Tensor decomposition

Many estimation problems can be reduced to tensor decomposition. For example, see [A+2014] for use of tensor decomposition to estimate problems like latent Dirichlet allocation, mixtures of Gaussians, etc. Concretely, given an order-k tensor, $T = \sum_{i=1}^{r} a_i^{\otimes k}$ with $a_i \in \mathbb{R}^n$, find $u \in \mathbb{R}^n$ that is close to some a_i in the sense of cosine similarity (up to signs):

$$\max_{i \in [r]} \frac{|\langle a_i, u \rangle|}{\|a_i\| \cdot \|u\|} \ge 0.9.$$

We can use sums of squares to help solve this problem in polynomial time and $\widetilde{\Omega}(n^{1.5})$ components drawn uniformly at random from the unit sphere.

The technique will reduce to the robust Jennrich's algorithm for tensor decomposition:

Theorem 18 (Robust Jennrich's algorithm, [MSS2016] [SS2017]). Let $T \in (\mathbb{R}^n)^{\otimes 3}$ be an order-3 tensor, and let $a_1, \ldots, a_r \in \mathbb{R}^n$ be unit vectors with orthogonality defect $\|\operatorname{Id}_r - A^T A\| \leq \epsilon$. Suppose:

$$\left\| T - \sum_{i=1}^{r} a_i^{\otimes 3} \right\|_F^2 \le \epsilon \cdot r,$$

and that $\max\{\|T\|_{\{1,3\},\{2\}}, \|T\|_{\{1\},\{2,3\}}\} \leq 10$. Then, there exists a randomized polynomial-time algorithm that outputs a unit vector $u \in \mathbb{R}^n$ such that:

$$\max_{i \in [r]} \langle a_i, u \rangle \ge 0.9,$$

with at least inverse polynomial probability.

Notice that Jennrich's algorithm requires a small orthogonality defect. The strategy for using SOS is to estimate a noisy version of $\sum_{i=1}^{r} a_i^{\otimes 6}$ from seeing $\sum_{i=1}^{r} a_i^{\otimes 3}$. Then, viewing the order-6 tensor as a 3-tensor over \mathbb{R}^{n^2} , with squared components $a_i \otimes a_i$, these vectors may become linearly indepedent and nearly orthogonal when $r \ll n$ under certain conditions. Thus, our SOS problem is to estimate X from Y over the feasible domain:

$$\mathcal{X} = \left\{ (X, Y) : X = \sum_{i=1}^{r} a_i^{\otimes 6}, Y = \sum_{i=1}^{r} a_i^{\otimes 3} \right\}.$$

References

- [A+2014] Anandkumar, A., et al. "Tensor decompositions for learning latent variable models." The Journal of Machine Learning Research 15.1 (2014): 2773-2832.
- [BS2016] Barak, B. Steurer, D. Proof, beliefs, and algorithms through the lens of sum-of-squares (2016).
- [C2015] Chen, Y. "Incoherence-Optimal Matrix Completion." IEEE Trans. Information Theory 61.5 (2015): 2909-2923.
- [DKS2018] Diakonikolas, I., Kane, D., Stewart, S.. "List-decodable robust mean estimation and learning mixtures of spherical gaussians." Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
 - [G2011] Gross, David. "Recovering low-rank matrices from few coefficients in any basis." IEEE Transactions on Information Theory 57.3 (2011): 1548-1566.
- [HL2018] Hopkins, S., and Li, J. "Mixture models, robustness, and sum of squares proofs." Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
- [KSS2018] Kothari, P., Steinhardt, J., Steurer, D. "Robust moment estimation and improved clustering via sum of squares." Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 2018.
- [MSS2016] Ma, T., Shi, J., Steurer, D. "Polynomial-time tensor decompositions with sum-of-squares." Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 2016.
 - [L2001] Lasserre, J. "Global optimization with polynomials and the problem of moments." SIAM Journal on optimization 11.3 (2001): 796-817.
 - [P2000] Parrilo, P. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Diss. California Institute of Technology (2000).
 - [R2011] Recht, B. "A simpler approach to matrix completion." Journal of Machine Learning Research 12.Dec (2011): 3413-3430.
- [RSS2018] Raghavendra, P., Schramm, T., Steurer, D. "High-dimensional estimation via sum-of-squares proofs." arXiv preprint arXiv:1807.11419 (2018).
- [SS2017] Schramm, T., Steurer, D. "Fast and robust tensor decomposition with applications to dictionary learning." arXiv preprint arXiv:1706.08672 (2017).