
Neural Network Reading Group Presenter: Geelon So

Winter 2020, February 28 Scribe: Geelon So

Using SVD to learn HMMs

The paper A spectral algorithm for learning hidden Markov models (Hsu, Kakade, Zhang 2007) provides

a simple and efficient algorithm to learn hidden Markov models (HMMs), which defines probabilities

over sequences of hidden states (ht) and observations (xt). The approach relies on learning observable

operators Bx for each observable x and a linear operator C such that:

Pr[x1, . . . , xt] = C(Bxt
· · ·Bx1

).

The goal here is to:

• estimate the joint distribution Pr[x1, . . . , xt]

• estimate the conditional distribution Pr[xt|x1, . . . , xt−1],

for all sequence lengths t.

A näıve solution to estimating P (x1, . . . , xt) = Pr[x1, . . . , xt] up to ε-close total variation distance would

be to draw something like nt/ε2 samples, which is exponential in the length of the sequence. This of course

makes no use of the HMM assumptions. This paper shows that it is possible to estimate P using around

t2mn/ε2 samples, where n is the number of possible observables and m is the number of hidden states.

1 Hidden Markov models

A hidden Markov model defines a distribution over sequences of hidden states (ht)
∞
t=1 and observations

(xt)
∞
t=1 such that:

1. the hidden states ht come from the set [m] and the observations xt come from the set [n]

2. the transition probability matrix Tij ∈ Rm×m and observation probability matrix Oij ∈ Rn×m

are defined as:

Tij = Pr[ht+1 = i|ht = j] and Oij = Pr[xt = i|ht = j]

3. the initial state distribution π ∈ Rm is defined:

πi = Pr[h1 = i].

4. the following conditional independence properties are satisfied:

a. conditioned on the previous hidden state ht−1, the current hidden state ht is sampled inde-

pendently from all other events in the history

b. conditioned on the current hidden state ht, the current observation xt is sampled independently

from all other events in the history.

And so, we have the following graphical model:

· · · ht−1 ht ht+1 · · ·

xt−1 xt xt+1

One standard way to represent HMMs is through a graph:
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Figure 1: The gray nodes are hidden states and the white nodes are observations. The

solid arrows correspond to transition probabilities; for example, T21 is the probability

of transitioning to state 2 from state 1, Pr[ht+1 = 2|ht = 1]. The dashed arrows are

observation probabilities, where O11 is Pr[xt = 1|ht = 1].

1.1 Observable operator model

If πt is the state distribution at time t, then the state distribution at time t+ 1 is just πt+1 = Tπt. We can

imagine the (πt) tracing out some trajectory in the probability simplex ∆m−1 ⊂ Rm. But more generally,

T just describes how (probability) mass on the hidden states travel; say we have w ∈ Rm as follows:

wi = Pr[ht = i ∧ event E holds] ⇒ (Tw)i = Pr[ht+1 = i ∧ event E holds].1

Note that w here does not even need to be normalized.

In particular, for each observation x ∈ [m], consider the observation operator Ax : Rm → Rm defined:

Ax = Tdiag(Ox,1, . . . , Ox,m).

Therefore, given a vector w of probability masses on each hidden state, Axw gives the probability masses

of observing x then ending up on each of the hidden states in the next time step. If w were a (normalized)

probability distribution over hidden states, then 1TAxw, the L1-length of Axw, is the probability of observing

x from that configuration of probability mass over hidden states. More generally,

Lemma 1. For any sequence (x1, . . . , xt) ∈ [n]t,

Pr[x1, . . . , xt] = 1TAxt
· · ·Ax1

π.

It follows that if we wish to estimate the joint distribution, we might try to estimate these observation

operators Ax for x ∈ [m]. The problem of course is that the hidden states are hidden, so we cannot view the

action of Ax on the hidden state distribution directly. Our interaction is mediated through the observable

operator O : Rm → Rn. Assuming that O is full rank, then the hidden state space Rm is isomorphic to its

image O(Rm) in Rn. This suggests the following high-level sketch:

1. recover the subspace range(O) with a set of m linearly independent vectors U ⊂ range(O) ⊂ Rn

2. construct a representation space isomorphic to the hidden state space via UTO : Rm → Rm

3. estimate the observation operators on the representation space Bx = (UTO)Ax(UTO)−1

1Technically, assume that E ∈ Ft, where (Fτ )∞τ=1 is the natural filtration of the stochastic process (hτ , xτ )∞τ=1.
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Figure 2: The dashed line is the probability simplex; π is the initial state distribution.

Ax1π describes the probability masses on the hidden states after seeing the observation

x1. Similarly, Ax2
Ax1

π describes the same after seeing the observations (x1, x2). The

lengths of these vectors is 1, the probability of seeing x1, and the probability of seeing

(x1, x2), respectively.

3



h(1)

h(2)

h(1)

h(2)

x(1)

x(2)

x(3)

x(1)

x(2)

x(3)

Rm Rm

Ax

Bx

O O

UT UT

Figure 3: The observable operators Ax act on the hidden state space. If O is full rank,

then it maps the hidden state space injectively into the observable space. Performing

subspace recovery, say through SVD, allows us to find an isomorphic representation of

that linear subspace U and the corresponding Bx on the representation space.
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2 Spectral learning of HMMs

The learning model and assumptions:

1. Learning model: we obtain samples generated from the HMM from the same initial state distribution.

2. HMM rank condition: π > 0 element-wise, and O and T are full-rank.

3. Invertibility condition: UTO is invertible, where U ∈ Rn×m. In other words, U defines m linearly

independent vectors in range(O).

Our goal will be to compute the quantity:

Pr[x1, . . . , xt] = 1TAxt
· · ·Ax1

π,

but as suggested before, we need to access these quantities through the representation UTO : Rm → Rm,

where the domain Rm is the space in which the hidden state distributions live, and the range Rm is the

representation space. In particular, we can define representations of π, Ax and 1 through:

Pr[x1, . . . , xt] =
(
1T(UTO)−1

)︸ ︷︷ ︸
bT

∞

(
(UTO)Axt

(UTO)−1
)︸ ︷︷ ︸

Bxt

· · ·
(
(UTO)Ax1

(UTO)−1
)︸ ︷︷ ︸

Bx1

(
(UTO)π

)︸ ︷︷ ︸
b1

.

In order to produce such a representation, we can look to estimating the following:

1. P1 ∈ Rn the initial observation distribution,

[P1]i = Pr[x1 = i]

2. P2,1 ∈ Rn×n the distribution over (x2, x1),

[P2,1]ij = Pr[x2 = i, x1 = j]

3. P3,x,1 ∈ Rn×n the conditional distribution over (x3, x, x1) for fixed x,

[P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = j].

In fact, it is not too hard to algebraically verify:

b1 = UTP1 bT
∞ = (P2,1U)

+
P1 Bx =

(
UTP3,x,1

) (
UTP2,1

)+ ∀x ∈ [n],

where X+ denotes the Moore-Penrose pseudo-inverse of a matrix X.

And to obtain such a U satisfying the above invertibility condition, we can perform SVD on P2,1:

Lemma 2 (One choice of U). Assume π > 0 and O, T have full rank. Then, rank(P2,1) = m. Moreover, if

U is the matrix of left singular vectors of P2,1 corresponding to non-zero singular values, then range(U) =

range(O), so UTO is invertible.

Proof. It is straightforward to verify that:

P2,1 = OTdiag(π)OT,

where diag(π) is the diagonal matrix with πi as entries. If O and T are full rank and π > 0, then P2,1 is also

rank m and has the same range as O. So, if U are the left singular vectors of P2,1 with non-zero singular

values, then U also has rank m and the same range as O.
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2.1 LearnHMM algorithm

Define the algorithm LearnHMM(m,N), for m the number of states and N the sample size, to return

HMM model parameterized by {b̂1, b̂∞, B̂x ∀x ∈ [n]}.

1. Independently sample N observation triples (x1, x2, x3) from HMM to form empirical estimates P̂1,

P̂2,1 and P̂3,x,1 for all x ∈ [n].

2. Compute SVD of P̂2,1 and let Û be the matrix of left singular vectors corresponding to the m largest

singular vectors.

3. Compute the model parameters:

(a) b̂1 = ÛTP̂1

(b) b̂∞ =
(
P̂T
2,1Û

)+
P1

(c) B̂x = ÛTP̂3,x,1

(
ÛTP̂2,1

)+
for all x ∈ [n]

2.2 Sample complexity analysis

Theorem 3 (Sample complexity, loose). Let 0 < ε, δ < 1. Then for all t ≥ 1, if T and O are full rank and:

N = Ωσm(O),σm(P2,1)

(
t2

ε2
·mn · log

1

δ

)
,

then with probability at least 1− δ, LearnHMM(m,N) satisfies:

‖P (X1, . . . , Xt)− P̂ (X1, . . . , Xt)‖1 ≤ ε.

Here, the σm(O) and σm(P2,1) are mth largest singular values, and Ωσm(O),σm(P2,1) takes them to be

constant order. Because we are representing the hidden state space through the map UTO, we need to make

sure that this map is well-conditioned—that not only is it invertible, but that it doesn’t collapse any

probability vectors too much.

As a high-level approach to proving Theorem 3, we take the following steps:

1. Show that if the number of samples N is sufficiently large, then the errors:

‖P̂1 − P‖2, ‖P̂2,1 − P2,1‖2, ‖P̂3,x,1 − P3,x,1‖2 (1)

are small with high probability. This concentration bound makes use of McDiarmid’s inequality.

2. Notice that we use P̂2,1 to obtain Û . We would like range(Û) ≈ range(O), and in particular, we want

ÛTO to be as well-conditioned as UTO. Using results from matrix perturbation theory, if U and Û are

close in L2, then range(U) ≈ range(Û) (in the sense of angles) and the singular values also close.

3. This previous point implies that Û is a good choice of map Û : Rn → Rm. So, while we motivated the

choice of U above through Lemma 2 to be the first m left singular vectors of P2,1, we could also choose

Û . According to this choice, b̂1, b̂∞ and B̂x are estimates of:

b̃1 = ÛTP1 b̃T
∞ =

(
P2,1Û

)+
P1 B̃x =

(
ÛTP3,x,1

)(
ÛTP2,1

)+
∀x ∈ [n],

and the following errors can be bounded in terms of the above estimation errors in Equation 1 and

σm(O), σm(P2,1),

δ∞ :=
∥∥∥(ÛTO)Tb̂∞ − 1

∥∥∥
∞
, ∆x :=

∥∥∥(ÛTO)−1B̂x(ÛTO)−Ax
∥∥∥
1
, δ1 :=

∥∥∥(ÛTO)−1b̂1 − π
∥∥∥
1
.
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4. We need to understand how error propagates when we multiply out:

B̂xt · · · B̂x1 b̂1.

If ∆ :=
∑
x∈[n] ∆x, then one can inductively show:∑
(x1,...,xt)

∥∥∥(ÛTO)−1
(
B̂xt
· · · B̂x1

b̂1 − B̃xt
· · · B̃x1

b̃1

)∥∥∥
1
≤ (1 + δ)tδ1 + (1 + ∆)t − 1,

where the summation is over all possible length-t observations (x1, . . . , xt) ∈ [n]t. Thus, if b̂1 is close

enough to b̃1, so δ1 is small, then when ∆ is made small enough, the error is only additive in t. The

right hand side is on the order of δ1 + t∆.

5. And finally, we need to bound the error when we estimate the L1-length of Axt
. . . Ax1

π through

computing b̃T
∞B̂xt · · · B̂x1

b̂1. One can obtain:

‖P − P̂‖1 =
∑

(x1,...,xt)

∣∣∣Pr[x1, . . . , xt]− P̂r[x1, . . . , xt]
∣∣∣ ≤ δ∞ + (1 + δ∞)

(
(1 + δ)tδ1 + (1 + ∆)t − 1

)
,

where P and P̂ are the joint distribution over (x1, . . . , xt) and its estimate by LearnHMM.

Theorem 3 follows from setting N sufficiently large to make δ1, δ∞, and ∆ small.

This sample complexity can in fact be improved; if n is very large, certain observations may almost never

be seen. Let S(ε) = {S ⊂ [n] : Pr[x2 ∈ S] ≥ 1− ε}. Then, define n0(ε0) to be the size of the smallest set of

observations that contains at least 1− ε0 of the probability mass:

n0(ε0) := min
S∈S(ε)

|S|.

Then, we have the following sample complexity bound:

Theorem 4 (Sample complexity). There exists C > 0 such that for all 0 < ε, δ < 1, for all t ≥ 1, if T and

O are full rank, if ε0 = σm(O)σm(P2,1ε/(4t
√
m) and:

N = C · t
2

ε2
·
(

m

σm(O)2σm(P2,1)4
+

m · n0(ε0)

σm(O)2σm(P2,1)2

)
· log

1

δ
,

then with probability at least 1− δ, LearnHMM(m,N) satisfies:

‖P (X1, . . . , Xt)− P̂ (X1, . . . , Xt)‖1 ≤ ε.

3 Extensions

• This paper also describes a technique to estimate the conditional distribution.

• This technique can be used to learn distributions that are ε-close to HMMs

• Later work shows how to kernelize this algorithm.
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