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Manifolds

“Manifolds are spaces that locally look like Euclidean space.”

Figure 1: ‘Local’ region U identified with a piece of Euclidean
space Rn. [L2003]
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Manifolds

But what does locally mean? Why care about locality?

3 / 91



Metric spaces

Metric spaces have a notion of distance:

d : X ×X → R.
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Topological Space

A topological space is one on which similar points behave similarly.

I comes with a notion of similarity (a ‘topology’)

I continuous functions are maps that ‘respect’ similarity
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Topology

Definition
A topology T of a space X is a collection of subsets of X (called
open sets) such that:

(i) ∅, X ∈ T
(ii) T is closed under finite intersection

(iii) T is closed under arbitrary union
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Learning Setup: Interlude

I X is the space our data comes from
I f a computation/measurement on X

I we think of f as a partial function with some domain A ⊂ X
I if x ∈ A, then f(x) returns > in finite time
I otherwise, f(x) does not halt

I f1, f2, . . . a collection of ‘primitive measurements’ on X
I these are all the physical measurements we can make on X in

finite time
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Learning Setup: Interlude

Definition
A function f is computable if it is either:

I a primitive measurement

I the conjunction of a finite number of computable functions

I the disjunction of a countable number of computable functions
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Topological Invariants

I cardinality

I number of connected components

I compactness

I metrizability

I separation

I homology group

I etc.
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Topological Invariants

If we know how points in a space are related, we can say
something about its shape.

I How are points connected?
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The Classical Example

Figure 2: The donut is topologically equivalent to the coffee mug. [link]
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https://aminsaied.github.io/topology-and-data-analysis/introduction


Topological Data Analysis: the hope

Topology studies the ‘shape’ of objects.

I What is the shape of data?

Topological invariants are indifferent to ‘nice deformations’.

I Any robust statistics about our data?

The topology of a space determine which functions are possible.

I Does knowing the topology of data improve learnability?
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Example: space determines the possible functions

Figure 3: If you travel along a straight road from A to B, I
could deduce how fast you were traveling at some point
just by observing how long it took. (No wormholes). [link]
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http://coincidenceandsynchronicity.blogspot.com/2012/04/speeding-car-chase-coincidence.html


Intuition into Topology

1. Defining simplicial complexes as model spaces

2. Generating simplicial complexes from data

3. Understanding the shape of data (simplicial homology)

4. Summarizing data (persistence homology)
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How are points connected?

Figure 4: To model how NYC is connected for cars, use a graph. [link]
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https://snazzymaps.com/


1-simplex is an edge

Definition
A 1-simplex [v0, v1] is a graph G = (S0, S1) where

S0 =
{
{v0}, {v1}

}
S1 =

{
{v0, v1}

}
,

where S0 are the vertices and S1 are the edges.
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Model 1-dimensional connection with 1-simplices

A 1-dimensional simplicial complex (a union of 1-simplexes) can
represent the 1D ‘topology’ for a car.

I i.e. a graph
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Model n-dimensional connections with n-simplexes

Figure 5: The 0-, 1-, 2-, and 3-simplex are ‘high-dimensional edges’. [link]
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https://www2.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-1.pdf


Approximation of Topological Spaces

Definition
An n-simplex [v0, . . . , vn] is a hypergraph K = (S0, S1, . . . , Sn)
where

S0 =
{
{v0}, . . . , {vn}

}
,

S1 =
{
{vi, vj} : 0 ≤ i < j ≤ n

}
...

Sn =
{
{v0, . . . , vn}

}
.

An element of Sk is a k-dimensional face of K.
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Approximation of Topological Spaces

Figure 6: Approximation of the torus. [link]
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https://www2.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-1.pdf


Simplicial Complex

Definition
A simplicial complex K is a set of simplexes such that:1

I every face of a simplex of K is also in K

I the intersection of any two simplexes σ1, σ2 ∈ K is a face of
both σ1 and σ2

1Definition statement from Wikipedia.
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Simplicial Complex

Figure 7: Definition of simplicial complex so that this is excluded. [link]
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https://upload.wikimedia.org/wikipedia/commons/5/5c/Simplicial_complex_nonexample.svg


Notation

In the following, we will tend to use:
I X is an underlying space where data is generated from

I often a metric space (X, d)

I X = {x1, . . . , xn} is the point data
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Graph from Data

Given data X and some measure of similarity/distance, how to
generate graph?

I k-nearest neighbor

I ε-graph

I etc.
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Simplicial Complex from Data: Vietoris-Rips complex

Figure 8: Vietoris-Rips complex for data sampled
from an annulus. [G2008]
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Vietoris-Rips complex

Definition
Let X be a set of points from a metric space, and ε ≥ 0. The
Vietoris-Rips complex Ripsε(X) is the set of simplices
[x0, . . . , xk] such that d(xi, xj) ≤ ε for all (i, j).2

I i.e. generate ε-graph from data, then ‘fill in’ any k-clique with
the k-simplex.

2Definition statement from [C2017].
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Simplicial Complex from Data: Čech complex

Figure 9: Generating a Čech complex for point data. [G2008]
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Čech complex

Definition
Let X be as above. The Čech complex Cechε(X) is the set of
simplices [x0, . . . , xk] such that the k+ 1 closed balls B(xi, ε) have
a nonempty intersection.3

I i.e. draw ε-ball around points xi, and k-way intersections
become k-simplexes.

3Definition statement from [C2017].
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Čech complex vs. Rips

Figure 10: The Čech complex is not the same as the Vietoris-Rips
complex. [G2008]
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Rips vs. Čech complex

Figure 11: Zoom in to example where Čech (middle) and
Rips (right) complex differ. [C20097]
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Rips vs. Čech complex

Ripsε(X) ⊂ Cechε(X) ⊂ Rips2ε(X).
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X and X

What about the relationship between the complex generated on
point data X and its underlying space X?
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Topological Relationships

Definition
Let X and Y be topological spaces. They are homeomorphic if
there exists a continuous map f : X → Y with continuous inverse.

I f is just a ‘renaming’ of points

I so, one can choose to study either X or Y
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Topological Relationships

Definition (Informal)

X and Y are homotopy equivalent if they can be continuously
deformed into each other.

I weaker than homeomorphism
(i.e. X,Y homeomorphic =⇒ homotopy equivalent)

I guarantees certain topological properties (shapes) are shared
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Topological Property

Definition
A space X is contractible if it is homotopy equivalent to a point
within X.

Figure 12: Which spaces are contractible? [link]

35 / 91

https://en.wikipedia.org/wiki/Contractible_space


What properties are preserved by the complexes?

Under certain conditions, the Čech complex will be homotopy
equivalent to the underlying space X where the data came from.

I i.e. we can learn something about the shape of X from X
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Good Cover

Definition
A good cover of X is an open cover such that all finite
intersections of open sets are either empty or contractible.

Figure 13: A bad (left) and good (right) cover. [link]
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https://en.wikipedia.org/wiki/Good_cover_(algebraic_topology)


Nerve Theorem

Theorem (Nerve Theorem)

Let X := {x1, . . . , xn} ⊂ X. If the open cover

{B(xi, ε) : xi ∈ X}

is a good cover of X, then Cechε(X) and X are homotopy
equivalent.
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Nerve Theorem (general)

Definition
Let U be a collection of open sets in X. Then, the nerve C(U) is
the Čech complex generated from U .

I this contrasts to using the open cover B(xi, ε)
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Nerve Theorem (general)

Theorem
Let U be a good cover of X. Then, X and the nerve C(U) are
homotopy equivalent.

I this suggests an algorithm to study the topological properties
of X—generate a good cover of X and compute the nerve
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Mapper Algorithm Intuition

Let X be the space we want to understand.

1. Let f : X → Rd summarize the important aspects of X

2. Form open cover V of Rd

3. Induces an open cover f−1(V) on X

4. Ensure f−1(V is a good cover

5. Generate and study the nerve of open cover
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Computing the Nerve

Figure 14: The refined pullback cover of the height function and
its nerve.4 [C2017]

4Caption statement from [C2017]
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Pullback Cover

Definition
Let f : X → Y be continuous. If V is an open cover of Y , then:

f−1(V) := {f−1(V ) : V ∈ V}

is the pullback cover of X induced by (f,V). The refined
pullback cover is the collection of connected components of
f−1(V ) for V ∈ V.
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Mapper Algorithm

Figure 15: Example of mapper algorithm on point cloud. [C2017]
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Mapper Algorithm

Algorithm 1 Mapper

input X a data set, a distance/similarity measure, f : X → Rd,
and a cover U of f(X)

1: For each U ∈ U , decompose f−1(U) into clusters CU,1, . . . , CU,k
2: Compute the nerve of CU,i’s.
3: return simplicial complex, the nerve

I choice of f , the filter or lens function

I choice of cover U (resolution/gain)

I choice of clustering algorithm
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Choice of Filter

The choice of f determines similarity with respect to what:

I PCA coordinates/nonlinear dimensionality reduction
coordinates

I centrality function and eccentricity function:

central(x) =
∑
y∈X

d(x, y) ecc(x) = max
y∈X

d(x, y)

I density estimates
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Choice of Cover

Mapper may be very sensitive to choice of cover. A standard
choice is evenly sized and spaced intervals

I resolution: the size of the intervals

I gain: the percent overlap of the intervals

Figure 16: A cover of R with resolution r and gain 25%. [C2017]
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Choice of Clustering

We need to cluster the preimages f−1(U), to generate a good
cover.

I apply any clustering algorithm, or

I build neighborhood graph (k-NN or ε-graph)
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Neural Codes

Figure 17: Place fields of for four place cells, recorded while a rat
explored a 2-dimensional square box environment.5 [Cu2017]

5Caption statement from [Cu2017]
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Neural Codes

Figure 18: Three environments and place fields that cover the
underlying space. [Cu2017]
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Neural Codes

Figure 19: Spike trains and neural codes. [Cu2017]
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Neural Codes

Figure 20: Codes and nerves of open covers. [Cu2017]
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Application to Mapping Disease Space
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Application to Mapping Disease Space

Figure 21: The path of an individual through a disease space. The choice
of filter through partially out-of-phase heath statistics can generate a
space with nontrivial fundamental group. [B2016]
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Application to Mapping Disease Space

Figure 22: Disease space of malaria-infected mice. [B2016]
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Geometric Reconstruction

Figure 23: A point cloud sampled from a torus with
varying offset values r1 < r2 < r3. [C2017]

56 / 91



Geometric Reconstruction

If K is a compact set, let dK(x) := infy∈K d(x, y). Then, the
reconstruction Xr is:

Xr = d−1
X ([0, r]).
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Geometric Reconstruction

Let φ = dX and ψ = dX.

Theorem (Reconstruction Theorem)

Suppose that the α-reach of φ is at least R. If

‖φ− ψ‖∞ < ε(α,R),

then there is some r(ε, α,R) such that ψ−1([0, r]) is homotopy
equivalent to X.

I the α-reach is just a regularity condition

I it could be the case that given φ and ψ no reconstruction is
possible
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Geometric Reconstruction

The Reconstruction theorem tells us when the Čech complex is
homotopy equivalent to the original space.

I But what can we deduce about X from Cech(X)?
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Homology Theory

Homology theory, homotopy theory, and more generally,
algebraic topology studies the topological features of a space
algebraically.
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Example: Hairy Ball Theorem

Figure 24: No nonzero smooth vector field exists on S2. [link]
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https://en.wikipedia.org/wiki/Hairy_ball_theorem


Example: Brouwer’s Fixed Point Theorem

Theorem (Brouwer)

Let X ⊂ Rn be a convex compact set. If f : X → X is
continuous, then f has a fixed point.
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Example: Closed vs. Exact

Figure 25: A vector field V on R2 where ∇× V = 0
everywhere except at 0. On R2, ∇× V ≡ 0⇔ V = ∇φ.
What about R2 \ {0}? [link]
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https://en.wikipedia.org/wiki/Closed_and_exact_differential_forms


Example: Stokes’ theorem

Theorem (Stokes)

Let Ω be an orientable manifold and ω be a differential form over
its boundary ∂Ω. Then: ∫

∂Ω
ω =

∫
Ω

dω.
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k-chains

Definition
Let K be a simplicial complex and k a nonnegative number.
Denote by Ck(K) the space of k-chains on K, the set of formal
linear combinations of k-simplexes of K.

For example, if {σ1, . . . , σp} ∈ K are k-simplexes, a k-chain is:

c =

p∑
i=1

αiσi,

where the αi’s are scalars.6

6Definition statement from [C2017].
65 / 91



k-chains

Definition
Let K be a simplicial complex and k a nonnegative number.
Denote by Ck(K) the space of k-chains on K, the set of formal
linear combinations of k-simplexes of K.

For example, if {σ1, . . . , σp} ∈ K are k-simplexes, a k-chain is:

c =

p∑
i=1

αiσi,

where the αi’s are scalars.6

6Definition statement from [C2017].
65 / 91



k-chains

The intuition is that Ck(K) is the vector space built over all the
k-dimensional subcomponents of K.
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Boundary operator

∂ : Ck(K)→ Ck−1(K)

I maps a k-dimensional object into its (k − 1)-dimensional
boundary
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Boundary operator

Definition
Let σ = [v0, . . . , vk] be a k-simplex. Then the (k − 1)-chain:

∂(σ) :=

k∑
i=1

(−1)i+1[v0, . . . , v̂i, . . . , vk]

is the boundary of σ. The boundary operator is the linear
extension to Ck(K).
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Boundary operator

Example

An edge e = [u, v] is a 1-simplex, and its boundary is:

∂([u, v]) = v − u.
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Boundary of Boundary

Figure 26: What is the boundary of a sphere? What is the
sphere a boundary of? [link]
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https://en.wikipedia.org/wiki/Sphere


Boundary of Boundary

∂k−1 ◦ ∂k ≡ 0.

71 / 91



Boundaries and Cycles

The following are (linear) subspaces of Ck(K):

Definition
The image im(∂k+1) is the space of boundaries Bk(K) of K.

Definition
The kernel ker(∂k) is the space of cycles Zk(K) of K.
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Boundaries and Cycles

Because the boundary of a boundary is zero,

Bk(K) ⊂ Zk(K).

I the dimension of Zk(K) gives ‘how many ways we can make
subcomplexes of K that can be filled in?’

I the dimension of Bk(K) gives ‘how many of these
subcomplexes are actually filled in?’
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Betti Number

Definition (Informal)

The Betti number βk of K is:

βk := dimZk(K)− dimBk(K).

I i.e. how many k-dimensional holes are there?
I β0 = number of connected components
I β1 = number of ‘circular’ holes (punctures)
I β2 = number of ‘voids’
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Example

Figure 27: The circle itself is a cycle; however, because the whole space is
1-dimensional, it is not the image of a 2-dimensional subspace. It is not a
boundary. So, β1(S1) = 1, as there is a ‘1D hole’ in S1. [link]
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https://www.illustrativemathematics.org/content-standards/tasks/1553


Example

Figure 28: The torus has β0 = 1, β1 = 2, β2 = 1.
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Homology Group

Definition (Formal)

The kth simplicial homology group of K is the quotient vector
space

Hk(K) = Zk(K)/Ck(K).

The kth Betti number βk is βk(K) = dimHk(K).

I the homology group can be extended to general topological
spaces.
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Homotopy Invariance

Theorem
If f : X → Y is a homeomorphism or a homotopy equivalence,
then

Hk(X) ∼= Hk(Y )

are isomorphic.
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Simplex and Space

Figure 29: A space can be studied by considering the appropriate
simplicial complex. [C2017]
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High-Level View

I the homology group summarizes the shape of an object

I homotopy equivalent spaces have the same homology group
(“they have the same shape”)

I given certain conditions, the Čech complex of point data is
homotopy equivalent to underlying space
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Challenge

We don’t have access to underlying space, so cannot prove
regularity conditions about it.

I So, study the Čech complex over a range of parameters.
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Persistence Barcodes

Figure 30: Persistence barcode for a function f : [0, 1]→ R. The diagram
on the right plots β0, the number of connected components. Imagine
water filling up the graph on the left. [C2017]
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Persistence Diagrams

Figure 31: Persistence barcode, plotting β1. [C2017]
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Persistence Barcodes for Data

Figure 32: Persistence barcode, plotting β0 and β1. The
size of the ball is called the filtration value. [C2017]
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Application to Viral Evolution
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Application to Viral Evolution

I data: viral genomes, with genetic distance as metric
I compute persistence homology; at a filtration value ε:

I β0 represents the number of strains/subclades
I 1D topology provides information about horizontal evolution
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Application to Viral Evolution

Figure 33: (A) tree shows vertical evolution (B) DAG with horizontal
evolution (C) trees are contractible (D) DAGs are not.7 [C2013]

7Caption statement from [C2013].
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Application to Viral Evolution

Hypothesis: higher dimensional homology groups capture even
more complex/multiple horizontal genetic exchange.
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Application to Viral Evolution

Figure 34: Persistence barcode based on genetic distances in three genes:
ENV, GAG, POL. Plot (D) is based on their concatenation. [C2013]
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Application to Viral Evolution

Figure 35: Representation of the recombination event with multiple
parental strains. The vertices correspond to a HIV-1 subtype. [C2017]
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