
Introduction to Tensors and their Decompositions

Aaron Geelon So

December 3, 2018

We often model parts of our world with linear spaces: objects are vectors inside that space, and relevant
properties and transformations are linear maps.

For example, we might define a vector space U of movie preferences; you might be some u ∈ U . Then,
there are certain linear maps f, g : U → R that capture your preferences. Maybe f(u) indicates how much
you like fantasy and g(u) indicate how much you like gore in your movies.

Now, what happens when we want to bring two parts of our world into interaction? How should we define
the vector space of, say, movie preferences for pairs of people? One approach we can naturally take is to look
at the vector space U × U . Suppose that there is once again a linear map that indicates group preference for
fantasy. What form does that map take? I claim the following:

Claim 1. Let U , V be finite-dimensional vector spaces. Let f : U × V →W be a linear map. Then, there
exist linear maps f1 : U →W and f2 : V →W such that:

f(u, v) = f1(u) + f2(v).

To highlight this, we could write U ⊕ V instead of U × V .

But this means that you and your friend’s movie preferences don’t really interact at all: the group
preference just becomes some weighted sum of your individual preferences. If we want a model that is able to
describe how putting the two of you together makes you both much more excited about gory fantasy movies,
we need to broaden our scope beyond linear maps.

In particular, we are interested in multilinear interactions. For example, it might be the case that your
group preferences are modeled by:

f(u, v) = f1(u) · f2(v),

where f1 and f2 are linear. In this model, it will turn out that we can consider f as a linear map f : U⊗U → R
where the space U ⊗ U is the vector space of movie preferences for pairs constructed in a very specific way
from the movie preferences of the individuals. This construction is called the tensor product.

By the way, physicists often describe physical systems through state spaces. For example, U might be the
space of all possible states for one particle, and V for another particle. When we bring those two particles
together, we form a larger state space. In quantum mechanics, in order to describe entanglement, the new
state space is described by the tensor product U ⊗ V .

But to see why we care about multilinear interaction, let’s take a look at a simple topic model problem for
motivation. The idea is that we will have N words and k topics. The words in a document are conditionally
independent on the topic; that is, given a topic t, a document of length ` is generated by independently
sampling from the probability distribution on the N words, µ(t). We also assume that each topic has
probability βt of being chosen.
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Let X1 be a document of length ` = 1. Then, it follows that total probability distribution P on X1 is the
vector:

P =
k∑
t=1

βtµ
(t).

What about documents (X1, X2) of length ` = 2? By conditional independence, the probability Pij that
(X1, X2) = (i, j), the ith followed by the jth word in our dictionary, is equal to:

Pij =
k∑
t=1

βtµ
(t)
i µ

(t)
j .

Notice that the first and second word have multilinear interaction; i.e. correlation is multilinear. Furthermore,
from this form, it follows that we can represent P as a matrix:

P =
k∑
t=1

βtµ
(t)µ(t)T.

Our task is to estimate the parameters βt, µ(t) from P . Even better, suppose we have a noisy version of P
because we estimated it from a finite sample of documents. Can we recover βt, µ(t), even approximately? It
turns out that we cannot, as a result of the rotation problem.

Suppose that P has the above decomposition. If we let U be any orthogonal matrix, then P also has the
decomposition:

P =
k∑
t=1

βt
(
µ(t)U

)(
µ(t)U

)T
.

And so, there is no unique set of parameters that generate P . In this case, we say that βt, µ(t) are not
identifiable. It follows that any parameters we do recover are not necessarily meaningful, in that they don’t
correspond to ‘reality’.

But if we look at three-way interactions (i.e. documents of at least length three), these parameters become
identifiable. The additional interactions make the object Pijk much more ‘rigid’; this object will be a order-3
tensor. The short answer to what a tensor is: a multiway array. However, this coordinate description of a
tensor makes it conceptually difficult to work with.

In the rest of the lecture, we’ll introduce some multilinear algebra, tensors, and tensor decompositions.
We’ll also get to see how we can use tensors in some estimation problems. Tensors often get a reputation
of being mysterious; the difficulty is that we often like to define our mathematical objects constructively.
However, tensors are most easily understood not by how they are constructed, but by how they behave. In
order to take a more functional approach to understanding tensors, we first need to understand dual spaces.

1 Dual spaces
At this point, we have two main actors: objects and functions. Usually, we tend to define functions with
respect to the objects. For example, given a vector space (i.e. a set with some very specific structure), we
can define linear maps (i.e. functions on that set respecting that structure). But, here, we’ll see that we can
define the objects with respect to how they behave under a collection of maps.

Definition 2. Let V be a vector space. A linear functional or covector is a linear map f : V → R. The
space of all linear functionals is called the dual space of V , denoted by V ∗. This space is made into a vector
space where scalar multiplication and vector addition are defined pointwise. That is, λf + µg is defined to be
the linear map:

x 7→ λf(x) + µg(x).
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Proposition 3. Let V be finite-dimensional. Then, V and V ∗ are isomorphic, V ∼= V ∗.

Proof as exercise.

This is a fact you’re already familiar with when working with matrices. On Rn, a linear functional f is
just a linear map from n dimensional space to 1 dimensional space. So, we can represent f by a 1× n matrix;
namely, a row vector. That is:

• vectors in Rn are column vectors

• covectors of Rn are row vectors

• covectors act on vectors through usual matrix multiplication:

f(x) =
[
f1 · · · fn

]
x1
...
xn

 =
n∑
i=1

fixi.

It follows that transpose T : Rn
∼=−→ (Rn)∗ provides a linear isomorphism between the two spaces.

On the other hand, instead of saying that f acts on x, we could have said x acts on f , writing:

x(f) =
[
f1 · · · fn

]
x1
...
xn

 =
n∑
i=1

fixi.

This shows that x can be seen as a linear functional on its dual space. In this way, we obtain a natural
inclusion Rn ↪−→ (Rn)∗∗.

Proposition 4. Let V be a vector space, not necessarily finite-dimensional. There is a natural inclusion from
V into its double dual V ∗∗. Additionally, when V is finite-dimensional, V and V ∗∗ are naturally isomorphic.

Proof as exercise.

As an important payoff here for a finite-dimensional vector space V , we don’t need to define the elements
of V constructively (e.g. giving them a representation through Rn). We can define them with respect to how
they behave under linear maps: from V ∗, obtain V ∼= V ∗∗.

Furthermore, this symmetrizes how we think about V and V ∗; elements of V ∗ are functions on V just as
elements of V are functions on V ∗. And so, through duality, we really can think of vectors as objects or as
functions; we’ll switch between these two perspectives to suit our purposes.

2 Bilinear maps and matrices
Definition 5. Let U, V,W be vector spaces. A bilinear map f : U × V →W is a map that is linear in each
entry:

f(λ1u1 + λ2u2, v) = λ1f(u1, v) + λ2f(u2, v)
f(u, µ1v1 + µ2v2) = µ1f(u, v1) + µ2f(u, v2).

Example 6. The inner product 〈·, ·〉 : Rn×Rn → R on Rn is a bilinear map. In particular, real multiplication
(a, b) 7→ ab is bilinear. As a nonexample, addition + : Rn × Rn → Rn is not bilinear.
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Example 7. Let V be a vector space, and define ev : V ∗ × V → R to be the evaluation map,

ev(f, v) = f(v).

The evaluation map is bilinear.

Example 8. Let M ∈ Rm×n be a matrix. The following map Rn × Rm → R is bilinear:

(v, w) 7→ wTMv.

Proposition 9. Let V,W be n- and m-dimensional vector spaces with fixed bases. Let f : V ×W → R be a
bilinear map. Then, there exists a unique (m× n)-dimensional matrix Mf such that for all v ∈ V , w ∈W ,

f(v, w) = [w]TMf [v] = Tr(Mf [v][w]T),

where we let [v], [w] be the coordinate representation of v and w, repsectively in their bases.

Before proving this proposition, it will help to define some notation:

Definition 10. Let U, V,W be vector spaces. We denote the vector space of linear maps from V to W by
Hom(V ;W ).1 Likewise, the vector space of bilinear maps from U × V to W is denoted Bilin(U, V ;W ).

Exercise 11. What is Hom(V ;R)?

Corollary 12. The following vector spaces are isomorphic:

Rm×n ∼= Bilin(Rn,Rm;R).

We’ll leave the proof of Corollary 12 as an exercise.

Proof of Proposition 9. Let f : V × W → R be a bilinear map. Borrowing from type theory, we can
equivalently consider the curried version of f , curry f : V →W → R.

This just means that we sequentially apply f to v ∈ V to get the map f(v, ·). Then, applying f(v, ·) to
w ∈W yields f(v, w):

v
curry f7−→ f(v, ·) followed by w

f(v,·)7−→ f(v, w).

Because f is bilinear, the latter map f(v, ·) : W → R is actually linear; i.e., f(v, ·) ∈W ∗. In other words, the
‘type signature’ of curry f is:

curry f : V →W ∗.

And again, because f is bilinear, for all w ∈W , we also have:

f(λ1v1 + λ2v2, w) = λ1f(v1, w) + λ2f(v2, w).

This implies that f(λ1v1 + λ2v2, ·) = λ1f(v1, ·) + λ2f(v2, ·); curry f is a linear map from V to W ∗.
This essentially completes our proof; given fixed bases on V and W , we know that every linear functional

h on W has a unique m-dimensional coordinate representation [h] such that for all w ∈W ,

h(w) = [w]T[h].

And given the linear map T between vector spaces V and W ∗, there is a unique matrix M such that:

[Tv] = M [v].

It follows that there is a unique matrix Mf such that f(v, w) = [w]TMf [v].
1The notation Hom(V ; W ) is short for the set of homomorphisms from V to W . When working with vector spaces,

homomorphisms are precisely linear maps.
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Note that if we additionally check a few conditions, our proof of the proposition yields:

Corollary 13. Let V,W as before. Then curry : Bilin(V,W ;R)
∼=−→ Hom(V,W ∗).

Proof as exercise.

3 Tensor product space
So far, we’ve learned that all bilinear maps f : V ×W → R can be represented by a matrix M , where:

f(v, w) =
∑

i∈[n],j∈[m]

Mijviwj . (1)

Looking at this formula from the context of the movie preference example from earlier, we see how bilinear
maps enable us to capture more interaction between two viewers. Unfortunately, it seems much harder to
work with bilinear maps than it is with linear maps; for example, Bilin(V,W ;R) is no longer dual to V ×W ,
unlike Hom(V ;R) and V .

But is there a way we can ‘linearize’ the bilinear maps? That is to say, although a bilinear map
f : V ×W → R is not linear over V ×W , can we somehow lift f to a different space on which the same
computation becomes linear?

What we desire is a linear space, which we’ll call V ⊗W , such that for all bilinear maps f ∈ Bilin(V,W ;Z),
there is a unique linear map f̃ ∈ Hom(V ⊗W ;Z) such that:

f(v, w) = f̃(v ⊗ w).

In this case, we say that the following diagram commutes,

V ×W V ⊗W

Z

⊗

f
∃!f̃

since either path of computation will yield the same result (uniqueness ensures that V ⊗W is the ‘smallest’
space for which this property holds).

Proposition 14. Such a pair (⊗, V ⊗W ) exists.

Proof. It is sufficient to prove that the above diagram commutes for Z = R because every k-dimensional
vector space can be decomposed into:

Z ∼= R
k times︷ ︸︸ ︷
⊕ · · ·⊕R.

Then, just consider πi ◦ f̃ : V ⊗W → R, where πi is the projection onto the ith coordinate. Because for each
coordinate, πi ◦ f̃ is unique, f̃ is unique too.

To see existence, let’s take a look at Equation 1. Since every real bilinear map is of this form, it follows
that by creating a new vector v ⊗ w ≡ ⊗(v, w) such that (v ⊗ w)ij = viwj , then:

f(v, w) =
∑

i∈[n],j∈[m]

Mijviwj

=
∑

i∈[n],j∈[m]

Mij(v ⊗ w)ij = f̃(v ⊗ w).
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So, there exists a linear f̃ : V ⊗W → R satisfying the commutative diagram.
To see uniqueness, we show that ∼ : Bilin(V,W ;R)

∼=−→ Hom(V ⊗W ;R) is a linear isomorphism. It’s not
hard to prove linearity. Following that, notice that the dimensions of both spaces are nm. Furthermore, the
map ∼ is a surjection, so it is an isomorphism.

In fact, an even faster proof would be to just set V ⊗W to Bilin(V,W ;R)∗ and ⊗(v, w) to be the evaluation
at (v, w), ev(v,w). Then, uniqueness follows from Bilin(V,W ;R) ∼= Bilin(V,W ;R)∗∗ ≡ (V ⊗W )∗. At this
point, the tensor product space of V and W is just any space that satisfies the above commutative diagram.
The following exercise shows that the pair (⊗, V ⊗W ) is unique up to unique isomorphism:

Exercise 15. Let V,W,Z be vector spaces. Suppose that there are there are two pairs (u1, U1) and (u2, U2),
with ui : V ×W → Ui bilinear such that for all f ∈ Bilin(V,W ;Z), there exists a unique f̃i ∈ Hom(Ui;Z) so
that the following diagram commutes:

V ×W Ui

Z

ui

f
∃!f̃i

Prove that U1 and U2 are uniquely isomorphic, in the sense that there is a unique isomorphism t : U1 → U2

such that u2 = t ◦ u1.

This shows that any pair (u, U) satisfying the tensor product universal property can be uniquely identifed
with (⊗, V ⊗W ). Thus, we can let ⊗ : V ×W → V ⊗W be the canonical tensor product.

To summarize, we have a powerful conceptual understanding of the tensor product space: V ⊗W is the
space on which bilinear maps become linear. We call objects in V ⊗W tensors. But when we want to perform
computations with tensors, it suffices to set a basis on V and W , and define the tensor product of v ⊗ w as
the two-dimensional array where

(v ⊗ w)ij = viwj =
(
vwT)

ij
.

In particular, if a1, . . . , an and b1, . . . , bm are bases on V and W , respectively, then the collection {ai ⊗ bj}
form a basis for V ⊗W .

4 Dual tensor product space
Definition 16. Let a1, . . . , an ∈ V form a basis on V . The dual basis is the set of vectors a1, . . . , an ∈ V ∗

such that:
ai(aj) = δij .

(Here, δij is the Kronecker delta, where δij = 1 if i = j and δij = 0 otherwise).

Proposition 17. Let a1, . . . , an ∈ V and b1, . . . , bm ∈W form a basis on V and W . Let a1, . . . an, b1, . . . , bm

be their dual bases. Then, the collection {ai ⊗ bj} forms a basis on (V ⊗W )∗. In particular, this implies that

(V ⊗W )∗ ∼= (V ∗)⊗ (W ∗).

Proof as exercise.

But from before, (V ⊗W )∗ ∼= Bilin(V,W ;R). In other words, the collection of real bilinear maps on
V ×W is isomorphic to the tensor space (V ∗)⊗ (W ∗). Once again, we obtain a similar duality principle as
with V and Hom(V ;R). This lets us switch between the perspectives that an object in V ⊗W can be viewed
as both a tensor and a bilinear map.
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Furthermore, this tells us that given a bilinear map f : V ×W → R, the corresponding linear map
f̃ : V ⊗W → R is of the form:

f̃ =
∑
j

gj ⊗ hj ,

where gj ∈ V ∗ and hj ∈W ∗. Furthermore, the way that g ⊗ h ∈ V ∗ ⊗W ∗ acts on v ⊗ w ∈ V ⊗W is:

ev(g ⊗ h, v ⊗ w) = g(v) · h(w).

Extending linearly, we have that in general:

ev

∑
j

gj ⊗ hj ,
∑
i

vi ⊗ wi

 =
∑
i,j

gj(vi) · hj(wi).

Exercise 18. We stated earlier that the evaluation map ev : V ∗ × V → R is bilinear. This implies that there
exists a unique map C : V ∗ ⊗ V → R such that the following diagram commutes:

V ∗ × V V ∗ ⊗ V

R

⊗

ev
∃!C

In other words, C is the unique map from V ∗ ⊗ V to R such that for all f ∈ V ∗ and v ∈ V :

ev(f, v) = f(v) = C(f ⊗ v).

Fixing a basis and corresponding dual basis on V and V ∗, let their coordinate representation be:

[f ] ≡
[
f1 · · · fn

]
[v] ≡


v1
...
vn

 [f ⊗ v] ≡ [v][f ],

where [v][f ] is the outer product of [v] and [f ]. Show that:

ev(f, v) = Tr ([v][f ]) .

This map C is called the contraction map, and this previous exercise shows why it is considered the
generalization of the trace from matrix algebra. And of course, just as C is linear here, the trace is linear
over the space of matrices Rn×n.

Exercise 19. Let T ∈ (V ⊗W )∗ ∼= V ∗ ⊗W ∗ and S ∈ V ⊗W be:

T =
t∑
i=1

f (i) ⊗ g(i) S =
s∑
j=1

v(j) ⊗ w(j).

Fix a basis on V and W , and let [f (i)] and [g(i)] be row vectors in that basis while [v(j)] and [w(j)] are column
vectors in that basis. Let [S] =

∑
i[g(j)]T[f (j)] and [T ] =

∑
j [v(j)][w(j)]T be their matrix representations.

Show that the following is true:

ev(T, S) :=
t∑
i=1

s∑
j=1

f (i)(v(j)) · g(i)(w(j)) =
s∑
j=1

(
w(j))T[T ]

(
vj
)

= Tr
(
[S][T ]

)
.

Note that trace is indeed a linear operator on the space of symmetric matrices.
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5 Multilinear maps and tensors
To generalize, we define multilinear functions analogously:

Definition 20. Let V1, . . . , Vk and Z be vector spaces. A multilinear function f : V1 × · · ·Vk → Z is a
function that is linear in each entry:

f(λ1u1 + · · ·+ λnun, v2, . . . , vn) =
k∑
i=1

λif(ui, v2, . . . , vn)

...

f(v1, . . . , vk−1, λ1u1 + · · ·+ λnun) =
k∑
i=1

λif(v1, . . . , vk−1, ui)

Quite analogously, the tensor product of the vector spaces V1, . . . , Vk is the space V1 ⊗ · · · ⊗ Vk that
linearizes multilinear functions f : V1×· · ·×Vk → Z. That is, there is a unique linear map f̃ : V1⊗· · ·⊗Vk → Z

such that:
f(v1, . . . , vk) = f̃(v1 ⊗ · · · ⊗ vk).

Furthermore, if we want to consider the tensor v1 ⊗ · · · ⊗ vk in terms of a fixed bases on all the vector spaces,
we obtain that for each f , there exists a unique T such that:

f(v1, . . . , vk) =
∑

i1,...,ik

Ti1···ikv1,i1 · · · vk,ik =
∑

i1,...,ik

Ti1···ik (v1 ⊗ · · · ⊗ vk)i1···ik ,

where we let vi,j denote the jth coordinate of the ith vector vi. Thus, we can think of v1 ⊗ · · · ⊗ vk as a
k-dimensional array.

Everything actually carries through from the bilinear case, because we can inductively apply our analysis.
For example, if f : U × V ×W → Z is trilinear, then fixing w ∈ W , fw : U × V → Z is bilinear. So, we
obtain fw : U ⊗ V → Z that is parametrized linearly over W . Thus, f : (U ⊗ V )×W → Z is bilinear. Then,
again, we get f : (U ⊗ V )⊗W → Z is linear.

A similar argument shows that f : U ⊗ (V ⊗W )→ Z is linear. These two spaces are uniquely isomorphic:

(U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ),

so we can define U ⊗ V ⊗W to be the canonical tensor product; we obtain that ⊗ is associative. This
approach also shows that (U ⊗ V ⊗W )∗ ∼= U∗ ⊗ V ∗ ⊗W ∗.

Definition 21. Let V1, . . . , Vk be vector spaces. We say that a tensor in V1 ⊗ · · · ⊗ Vk is an order-k tensor.
A pure tensor is one of the form:

v(1) ⊗ · · · ⊗ v(k).

In general, tensors are linear combinations of pure tensors; the rank of a tensor T is the minimum r such
that it can be decomposed as a sum of pure tensors:

T =
r∑
i=1

v
(1)
i ⊗ · · · ⊗ v

(k)
i ,

where v(j)
i ∈ Vj. Note that the rank of order-2 tensors coincide with the rank of the corresponding matrix.

Because general tensors are just linear combinations of pure tensors, it often suffices to analyze how maps
act on pure tensors. For example, we now define the contraction along the i, j axes of a tensor for pure
tensors; this just extends linearly to general tensors:
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Definition 22. Let V1, . . . , Vi, . . . , Vj . . . , Vk be vector spaces where Vj = V ∗i . The contraction along the i, j
axes is the linear map Cji : V1 ⊗ · · · ⊗ Vk → V1 ⊗ · · · V̂i · · · V̂j · · · ⊗ Vk

v(1) ⊗ · · · ⊗ v(k) 7→ ev(v(i), v(j)) · v(1) ⊗ · · · v̂(i) · · · v̂(j) · · · ⊗ v(k),

where the notation v̂(i) and V̂ (i) means that the ith component is removed.

6 Tensor products over inner product spaces
• Restrict setting to V = Rn. With the addition of inner product on Rn (i.e. canonical basis), there is a

natural identification of Rn and (Rn)∗.

• Inner product on Rn induces inner product on (Rn)⊗d

• Give connection to kernel functions:

Exercise 23. Let K : Rn ×Rn → R be the homogeneous quadratic kernel K(x, y) = 〈x, y〉2. Show that there
exists a feature map φ : Rn → Rn ⊗ Rn such that:

K(x, y) = 〈φ(x), φ(y)〉.

More generally, show that for the polynomial kernel K(x, y) = (〈x, y〉+ c)d, there is a feature map

φ : Rn → (Rn)⊗d ⊕ (Rn)⊗d−1 ⊕ · · · ⊕ Rn ⊕ R.

7 Tensor decompositions
Our goal of tensor decomposition is to take a tensor T ∈ (Rn)⊗d and write it as a sum:

T =
r∑
i=1

v
(1)
i ⊗ · · · ⊗ v

(d)
i .

In the matrix case, where d = 2, this amounts to finding a decomposition of a matrix M ∈ Rn×n such that:

M =
r∑
i=1

uiv
T
i ,

where ui, vi ∈ Rn. In the matrix case, there is no unique decomposition of the matrix. Here, r is at most n, so
we have 2n2 degrees of freedom. Given the matrix M , we obtain n2 equations, so in total we have n2 degrees
of freedom left. Indeed, notice that given any decomposition, taking any invertible matrix A ∈ GL(n;R),

M =
n∑
i=1

uiv
T
i =

n∑
i=1

(uiAT)(viA−1)T,

where GL(n;R) is an n2-dimensional manifold.
However, for d ≥ 3 and r ≤ n, in the tensor case, we have dn2 degrees of freedom but nd equations, so we

have a chance of being able to identify the v(j)
i ’s from T . In fact, we can often use Jennrich’s algorithm.
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7.1 Jennrich’s algorithm

Let T ∈ (Rn)⊗3. Suppose that T is rank r ≤ n, of the form:

T =
r∑
i=1

ui ⊗ vi ⊗ wi.

Let U , V , and W be the matrices whose columns are ui, vi, and wi. Assume that V,W are full rank.
Then, draw two vectors ξ1, ξ2 ∼ N (0, Idn×n) from a standard Gaussian on Rn. Compute the matrices

M1 = T (ξ1) and M2 = T (ξ2):

Mj =
r∑
i=1
〈ξj , ui〉vi ⊗ wi.

In other words, letting Dj = diag(〈ξi, ui〉)ri=1, we obtain:

Mj = V DjW
T.

We would like to decompose the Mj ’s, in order to recover V and W , allowing us to also solve for U . Unlike
before, we now have two matrices of the form V D1W

T and V D2W
T. By assumption, V and W are full rank.

Dj will essentially always be invertible. And so, we can compute:

M1M
+
2 = V D1D

−1
2 V +.

Notice that vi is an eigenvector to M1M
+
2 with eigenvalue 〈ξ1, ui〉/〈ξ2, ui〉. As M1M

+
2 has exactly r nonzero

eigenvalues, their corresponding eigenvectors must be v1, . . . , vr.

7.2 Orthogonal tensor decomposition

Definition 24. Let T ∈ (Rn)⊗3. An eigenvector of T is a unit vector u ∈ Rn such that:

T (I, u, u) = λu,

for some eigenvalue λ ∈ R.

Note that eigenvectors for tensors are slightly different from matrix eigenvectors, in that:

• if λ1 = λ2 for two eigenvectors v1, v2, their linear combination is not necessarily an eigenvector

• on the other hand, 1
λ1
v1 + 1

λ2
v2 is proportional to an eigenvector.

Definition 25. A robust eigenvector of T is u ∈ Rn such that there exists an ε > 0 such that for all
θ ∈ B(u, ε), repeated iteration of the map

θ̄ 7→ T (I, θ̄, θ̄
‖T (I, θ̄, θ̄‖

starting from θ converges to u.

Theorem 26. Let T be odeco.

• the set of θ ∈ Rn which do not converge to some vi under repeated iterations of the above map has
measure zero.

• the set of rubusts eigenvectors of T is equal to {v1, . . . , vn}.

Lemma 27. Let T ∈
⊗3 Rn have an orthogonal decomposition. For a vector θ0 ∈ Rn, suppose that the set

of numbers |λ1v
T
1 θ0|, . . . , |λkvT

k θ0| has a unique largest element. WLOG, let |λ1v
T
1 θ0| be the largest and the

corresponding term for be the second largest. Then:

‖v1 − θ1‖2 ≤

(
2λ2

1

k∑
i=2

λ−2
i

)∣∣∣∣λ2v
T
2 θ0

λ1vT
1 θ0

∣∣∣∣2
t+1
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8 Parameter estimation
• Describe general algorithm for latent variable models through method of moments

• Give specific moments for LSI, LDA, GMMs

• Prove bounds (contrast with EM, with not guarantees)
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