Tensor Decompositions

Geelon So (ags2191)

July 19, 2018

1/113



Parameter Estimation

Problem: Let 6 parametrize our model for the world.

» How to determine model parameter 6 using empirical data?
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Method of Moments

Let X be data we observe generated by model with 6.
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Method of Moments

Let X be data we observe generated by model with 6.
1. f(X) is a function that measures something about the data.

2. From our data, we can form an empirical estimate:

E[f(X)]-
3. Then, we solve an inverse problem—which 0 satisfies:

Eqlf(X)] = E[f(X)).
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Method of Moments

Let X be data we observe generated by model with 6.

1. f(X) is a function that measures something about the data.

2. From our data, we can form an empirical estimate:

This yields some estimate # of the model parameter.
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Concerns

1. Identifiability: is determining the true parameters 6 possible?
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Concerns

. Identifiability: is determining the true parameters 6 possible?
. Consistency: will our estimate 6 converge to the true 67

. Complexity: how many samples? how much time? (for ¢, J)

A W N =

. Bias: how off is the model’s best?
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Tensor Decompositions in Parameter Estimation

High level:
» Construct f(X) a tensor-valued function.
» Tensors have ‘rigid’ structure, so identifiability becomes easier.
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Tensor Decompositions in Parameter Estimation

High level:
» Construct f(X) a tensor-valued function.
» Tensors have ‘rigid’ structure, so identifiability becomes easier.
» There are efficient algorithms to decompose tensors.
» This allows us to retrieve model parameters.
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Motivating Example I: Factor Analysis

Setup: There are n tests, k personality traits, and m students.

» each student has a linear combination of those traits

» each test is a linear function of those traits

C
A = B | kxm)

(nxm) (nxk)

6
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Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and cn

1This problem is originally due to Spearman, described in [M2016].
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Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and cn

» that is, is there a unique factorization:

k
A=> "Bl
i=1

'This problem is originally due to Spearman, described in [M2016].
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Motivating Example I: Factor Analysis

Rotation Problem: if B and C are solutions, and R € GL(k,R):

R R C
A |=1]| B | (kxk) (kxk)  (kxm)

(nxm) (nxk)

then so are BR~! and RC.

» thus B and C' are not unique (and so not identifiable)
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Motivating Example Il: Topic Modeling

Setup: t topics, vocabulary size d, and 3-word long documents.
> topic h is chosen with probability wy,

» words x;'s are conditionally independent on topic h, according
to probability distribution P € A4~1
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Motivating Example Il: Topic Modeling

Notation: define the 3-way array M to be:

1
|
|
'
1
|
|
|
1
|

t
Mije = Ploy = i,20 = j,os = k| = > _w, P PP}
h=1
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Motivating Example Il: Topic Modeling

Problem: given M, can we deduce ¢, wp's and P"'s?2

This problem is presented in [H2017].
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Motivating Examples: Comparison

Problem |

k
Ars — Z Bricis
=1

> [A,s] is an n X m matrix.

» Fixing i, [B,;C;s] is a n X m matrix with rank 1.
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Motivating Examples: Comparison

Problem 11

t
Mijr =Y _w, P PP}
h=1

> [M;jx] is an d x d x d matrix.
» Fixing h, [thihP]hP,?} isadxdxd array of ‘rank’ 1.
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Outline
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Coordinate-free linear algebra

v

Multilinear algebra and tensors

v

SVD and low-rank approximations

v

Tensor decompositions

Latent variable models

v
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Coordinate-Free Linear Algebra

Figure 1. “Don’t use coordinates unless someone holds a
pickle to your head.” J. M. Landsberg [L2012]



Dual Vector Space

Definition
Let V' be a finite-dimensional vector space over R. The dual vector
space V* is the space of all real-valued linear functions f : V — R.
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Dual Vector Space

Definition
Let V' be a finite-dimensional vector space over R. The dual vector
space V* is the space of all real-valued linear functions f : V — R.

» We call vectors in V* dual vectors.
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Vector Space and its Dual

How should we make sense of V and V*?
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Vector Space and its Dual

How should we make sense of V and V*7
» V is the space of objects or states

» the dimension of V' is how many degrees of freedom/
ways for objects to be different

» V* makes a real-valued measurement on an object/state
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Vector Space and its Dual

Example (Traits)
Let V' be the space of personality traits of an individual.
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Vector Space and its Dual

Example (Traits)
Let V' be the space of personality traits of an individual.

> Perhaps, secretly, we know that there are k independent
traits, so V' = span(ey, ..., ex)

» We can design tests e', ..., e¥ that measure how much an
individual has those traits:

¢'(e;) = bij.
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Vector Space and its Dual

Example (Traits, cont.)

Say Alice has personality trait v € V. Then, her ith trait has
magnitude: ‘ ‘
o' = e'(v),

which is a scalar in R.
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Vector Space and its Dual

Example (Traits, cont.)
Say Alice has personality trait v € V. Then, her ith trait has
magnitude: ‘ ‘
o' = e'(v),
which is a scalar in R.

» Since v = >_ a'e;, we can represent her personality in
coordinates with respect to the basis e; by a 1D array
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Vector Space and its Dual

Example (Traits, cont.)
On the other hand, say we have a personality test f € V*.
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Example (Traits, cont.)
On the other hand, say we have a personality test f € V*.
» The amount that f tests for the ith trait is:

Bi = f(eh),

which is a scalar.
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Vector Space and its Dual

Example (Traits, cont.)
On the other hand, say we have a personality test f € V*.
» The amount that f tests for the ith trait is:

Bi = f(eh),

which is a scalar.

» It follows that the e'’s form a basis on V*, and f = >_ ;€'
We can represent f in coordinates:

F1=180 - B
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Vector Space and its Dual

Example (Traits, cont.)

The score Alice gets on the test f is then:
al k

F)=[B - B]|: :Zalﬂi.

k i=1
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Vector Space and its Dual

Example (Traits, cont.)
Notice that we can define the operation C' : V* x V — R

C(f?“) - f(U),

which conceptually means to ‘take the measurement f on v’
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Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally
substituted any (finite-dimensional) abstract vector space V' by
some R".
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Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally
substituted any (finite-dimensional) abstract vector space V' by
some R".

» The price was coordinates, [v] = 3" a'e;.

» And real-valued linear map as 1 x n matrix (more numbers).
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Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and
maps, coordinates might reduce clarity.

24 /113



Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and
maps, coordinates might reduce clarity.

» For now, just understand that V is a space of objects, while
V* is a space of devices that make linear measurements.

24 /113



Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and
maps, coordinates might reduce clarity.

» For now, just understand that V is a space of objects, while
V* is a space of devices that make linear measurements.

» These are dual objects, and there is a natural way we can
apply two dual objects to each other.
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Linear Transformations

Example (Traits, cont.)

Let's introduce a machinel' : V' — V that takes in a person and
purges them of all personality except for the first trait, e.
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Linear Transformations

Example (Traits, cont.)

Let's introduce a machinel' : V' — V that takes in a person and
purges them of all personality except for the first trait, e.

» j.e. T projectsv € V onto e;.
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Linear Transformations

Example (Traits, cont.)
Thus, given v € V the machine T':
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Linear Transformations

Example (Traits, cont.)

Thus, given v € V the machine T':
1. measures the magnitude of trait e; using e' € V*
2. outputs e!(v) attached toe; € V:

T(w) =e; @et(v)

where we informally use ® to mean ‘attach’.
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Linear Transformations

Example (Traits, cont.)

Thus, given v € V the machine T':
1. measures the magnitude of trait e; using e' € V*
2. outputs e!(v) attached toe; € V:

T(w) =e; @et(v)

where we informally use ® to mean ‘attach’.
Naturally, we say that T = e; ® e'.

26
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Linear Transformation

Example (Traits, cont.)
The matrix representation of T = e; ® el is:

10 --- 0
0 0
[T] = _
0 0
The first row of [T'] determines what [T'v|; is; indeed the first row
is the dual vector e'.
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Linear Transformations

More generally, let T': V' — V be a linear transformation:
T:V -V =Re @D Re,,

so we can decompose T into n maps, 7% : V — Re;.
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Linear Transformations
More generally, let T': V' — V be a linear transformation:
T:V >V =Re; @D Rey,

so we can decompose T into n maps, 7% : V — Re;.
» But notice that Re; is isomorphic to R.

» So really, T is a measurement in V* (it produces a scalar),
but we've attached the output to the vector e;:

67,(8)71z
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Linear Transformations

More generally, let T': V' — V be a linear transformation:
T:V -V =Re @D Re,,

so we can decompose T into n maps, 7% : V — Re;.
» But notice that Re; is isomorphic to R.

» So really, T is a measurement in V* (it produces a scalar),
but we've attached the output to the vector e;:

67,(8)71z

» Recomposing T', we get:

n
T = Zei ® T".
=1
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Linear Transformations

Relying on how we usually use matrices,

To| = T v

(nx1) (nxmn) (nx1)

the ith row of [T] gives the coordinate representation of the dual
vector 1" € V* that we then attach to e;.
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Linear Transformations

Definition
Let V ® V* be the vector space of all linear maps T : V — V.
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Linear Transformations

Definition
Let V ® V* be the vector space of all linear maps T : V — V.

» Objects in V' @ V* are linear combinations of v ® f, where
veVand feV*

» The action of (v® f) on a vector u € V is:

(0@ f(u) =v& flu) = f(u)-v.
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Other Views

Stepping back a bit, we have objects v € V' and dual objects
f € V*. We stuck them together producing v ® f. It is:
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Other Views

Stepping back a bit, we have objects v € V' and dual objects
f € V*. We stuck them together producing v ® f. It is:

> alinearmap V. —V
> a linear map V* — V*, with g — g(v) - f
> a bilinear map V* x V — R, with (g,u) — g(v) - f(u)
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Wire Diagram
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Coordinate-Free Objects

Importantly, our definitions of V, V* and V. ® V* are
coordinate-free and do not depend on a basis. Thus, each have
‘physical reality’ outside of a basis:

» object
> measuring-device

» object-attached-to-measuring-device
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Tensors

God created the matrix.
The Devil created the tensor.

—G. Ottaviani [02014]
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Tensors: definitions

el A

coordinate-free
coordinate
formal

multilinear
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The Matrix: physical picture

We can describe a matrix as this object in V ® V*:
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Tensor Product: physical picture
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Contraction: physical picture
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Tensor Product: coordinate definition

The tensor product of R™ and R™ is the space
If e1,...,e, and f1,..., fin are their bases, then
e ® fj

form a basis on R™ @ R™,
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Tensor Product: coordinate definition

We think of an element of R” @ R" as an array of size n x m.
Given any u € R™ and v € R™, their tensor product is:

(u®v)ij = wvy,

coinciding with the usual outer product uv? .
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Tensor Product: formal definition

Definition

Let V and W be vector spaces. The tensor product V& W is the
vector space generated over elements of the form v ® w modulo
the equivalence:

(M) @w=ANv®w)=v® (Aw)

(MN+v2)Qw=v1Qw+rv2 W
v ® (w1 +wp) = v QW + v ® wa,

where A € R and v,v1,v9 € V and w,wi,wy € W.
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Tensor Product: formal definition

A general element of V @ W is of the form (nonuniquely):

¢
Z Aiv; @ wy,
i=1

where \; € Rand v; € V and w; € W.

42 /113



Tensor Product: basis

Let v1,...,v, € V and wy,...,w,, € W be bases. Then, the
elements of the form
V; @ wy

form a basis for V@ W, where 1 <i<nand1<j<m.
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Tensor Product: formal definition

Definition
If V4, ..., V, are vector spaces, then V| ® --- ® V,, is the vector
space generated by taking the iterated tensor product®

V@ @V, =((VMeoWh)eVz)e---V,).

» We say that a tensor in this tensor product space has order n.

3We drop parentheses and say that ® is associative because we can take
canonical identifications between the different orders of tensor product
operations (not order of the vector spaces themselves; it is not commutative).
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Tensor Product: coordinate picture

We arrive back to the picture of the n-dimensional array of
coordinates. For example, here T e U@V @ W is:

T = Zkaul R V; QW
i)j’k
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Multilinear Function

Definition
Let Vq,...,V,,W be vector spaces. Amap A: Vi x---xV, =W
is multilinear if it is linear in each argument.

» That is, for all v, € V,, and for all ¢,
A(Ul,...vifl, . ,UZ'+1,...,’Un) . ‘/z — W

is a linear map.
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Multilinear Function

Exercise
IfA: Vi x---xV, — R is multilinear, is it linear? What is a basis
of Vi x -+ x V,, as a vector space?
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Multilinear Function

Example
Let f : R xR xR — R be defined by f(z,y,z) = xyz.

Example
Let X : V xV* =V ®V* be defined by X (v, f) =v® f.
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Multilinear Function: intuition

Let A: V] x---xV,, = R be multilinear.
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Multilinear Function: intuition

Let A: V] x---xV,, = R be multilinear.

» Say Vi are the individual's personality traits

V., are drugs the individual has taken

» A(vy,...,v,) is how well the individual performs on a test,
given their characteristics (v1,...,v,).
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Multilinear Function: intuition

Multilinearity implies:
A(v, ..., 2v,) = 2A(v1, ..., 0p),

meaning that if Alice are on twice as many drugs, she perform
twice as well/poorly.

50 /113



Multilinear Function: intuition

On the other hand, if A is merely linear:
A(vr, ..., 20,) = A(ve,..oyon) + A0, .0 vp).

Here, each coordinate v1, ..., v, is independent from each other.
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Multilinear Function: intuition

Conceptually, a multilinear function entangles each of the
coordinates together.
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Multilinear Function: intuition

Conceptually, a multilinear function entangles each of the
coordinates together.

» The linear function treats each coordinate independently.
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Tensor Product: multilinear

Let V1,...,V, be vector spaces. The tensor product attaches the
objects (vy,...,vy) together into the single:

V- QU EVIQ--- 1V,

in such a way that any multilinear map A: Vi x -V, = W
becomes linear A: Vi ® --- @ V,, — W.
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Tensor Space as Vector Space
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Contraction
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Tensor Product: currying
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Notation

d times

Let V®4 denote the tensor space V ® V.

d times

> Let v® =0 ® ®uvforveV.
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Decomposable/Pure Tensor

Definition
AtensorT € V1 ®---®V,, is decomposable or pure if there are
vectors v1 € Vi, ...,v, € V,, such that:

T=v1® Qv
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Decomposable Matrix

Let M € V ® V* is decomposable, so M = v ® f.

Exercise
Describe the action of M : V. — V. What is its rank? What would
its singular value decomposition look like?
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Decomposable Matrix

Let M € V ® V* is decomposable, so M = v ® f.

Exercise
Describe the action of M : V. — V. What is its rank? What would
its singular value decomposition look like?

> Physically, it is a ‘machine’ that is sensitive to one direction,
and spits out a vector also only in one direction.
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Decomposable Matrix

Let M € V ® V* is decomposable, so M = v ® f.

Exercise
Describe the action of M : V. — V. What is its rank? What would
its singular value decomposition look like?

> Physically, it is a ‘machine’ that is sensitive to one direction,
and spits out a vector also only in one direction.

» What if M =3 v; ® f°?
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Rank

Definition
The rank of a tensor T € V1 ® --- ® V,, is the minimum number r
such that T is a sum of r decomposable tensors:

T:iTi
i=1

- ZU@ ®- @l
=1
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Rank of Matrix

The tensor rank coincides with the matrix rank. However, intuition
from matrices don’t carry over to tensors.

» row rank = column rank is generally false for tensors

» rank < minimum dimension is also false

61/113



Rank of Matrix

The tensor rank coincides with the matrix rank. However, intuition
from matrices don’t carry over to tensors.

» row rank = column rank is generally false for tensors
» rank < minimum dimension is also false

In fact, computing the rank of a tensor is NP-hard.
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Computational Complexity

Figure 2:

Problem

Complexity

Bivariate Matrix Functions over R, C

Undecidable (Proposition 12.2)

Bilinear System over &, C

NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R

NP-hard (Theorem 1.3)

Approximating Eigenvector over R

NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R

NP-hard (Theorem 9.3)

Symmetric over R

NP-hard (Theorem 9.6)

Singular Value over E, C

NP-hard (Theorem 1.7)

Symmetric Singular Value over &

NP-hard (Theorem 10.2)

Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over B

NP-hard (Theorem 10.2)

Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R

#P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant

NP-, #P-, VNP-hard (Theorems 4.1, 4.2, Corollary 4.3)

Geometric Hyperdeterminant

Conjectures 1.9, 13.1

Symmetric Rank

Conjecture 13.2

Bilinear Programming

Conjecture 13.4

Bilinear Least Squares

Conjecture 13.5

Note: Except for positive and the

all problems refer to the 3-tensor case.

“Most tensor problems

are NP-hard”,

which apply to 4-tensors,

Hillar & Lim, [H2013]



Why do we care about rank?

We'll take a hint from singular value decomposition (SVD) for
matrices.

» Since we want to begin talking about SVD, we need a notion
of inner product on our space.
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Choice of Basis

Remark

If'V is a finite-dimensional vector space, then a choice of basis
el,...,ex €V induces a dual basis e*,...,e* € V* and an inner
product/norm on V and V*:

(u, v)v = [u]"[v] (f.9)v+ = [fllg]",

where [u]”[v] and [f][g]", we mean the standard dot product on
coordinates.
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Choice of Basis

In short, a choice of basis is (essentially) equivalent to a choice of
inner product. In the following, we can identify V', V*, and R".
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Singular Value Decomposition

Theorem (SVD, coordinate)
Any real m x n matrix has the SVD

A=UxVT,

where U and V' are orthogonal, and ¥ = Diag(o1,09,...), with
g1 ZO‘Q Z -"0.4

*Theorem statement from [02015].
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Singular Value Decomposition: physical version

For simplicity, we'll state the version for A € V ® V*, where
adjoints are implicit due to the identification of V' with V* (from
the choice of basis).

Theorem (SVD, coordinate-free)

Let A€V @ V*. Then there is a decomposition (SVD)

k

A=) oi(v;® f),

=1

where o1 > --- > o3 > 0 such that the v;’s are unit vectors and
pairwise orthogonal, and similarly for the f*’s.
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Singular Value Decomposition: physical picture
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Singular Value Decomposition: geometric version

Theorem (SVD, geometric)

Let A € R™*" and let ULV be its SVD, where
X =%+ + Xk (again, we assume o1 > --- > o). Then,
U1 VT is the best rank-1 approximation of A:

A - UzlvTHF <|[A-X||p

for all matrices X of rank 1.°

*Theorem statement from [02015].
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Singular Value Decomposition: geometric version

Theorem (SVD, geometric)

Let A € R™*" and let ULV be its SVD, where
X =%+ + Xk (again, we assume o1 > --- > o). Then,
U1 VT is the best rank-1 approximation of A:

A - UzlvTHF <|[A-X||p

for all matrices X of rank 1.°

*Theorem statement from [02015].
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Singular Value Decomposition: geometric version

In fact, we can iteratively generate UY; ;1 V7 by finding the best
rank-1 approximation of A after being deflated of its first i singular
values:

A— (U VT 44U VT,
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Singular Value Decomposition: geometric picture
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Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is
less than k7?7
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Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is
less than k7?7

» Determinants of k x k minors.
» The determinant is a polynomial equation over the e; ® f7's.

» The subset of m x n matrices:
My, = {m x n matrices of rank < k}

is the zero set of some set of polynomial equations.
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Singular Value Decomposition: geometric version

Note that the M,.'s contain each other:

0O=MoycM;C---C Mmin{m,n} = R™*"™,
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Singular Value Decomposition: geometric version

Let A= UXVT be the SVD and 1 < 7 < rank(A).

Theorem (Eckart-Young)

All critical points of the distance function from A to the (smooth)
variety M, \ M,_1 are given by:

U(Si, + -+ 3,)V7,

where 1 < i), < rank(A). If the nonzero singular values of A are
distinct, then the number of critical points is (ranl;(A))ﬁ

®Theorem statement from [02015].
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Singular Value Decomposition: tensor notation

Notice that SVD states that any matrix A € R"™*"™ may be

decomposed into:
A=%-(UV),

where ¥ € R™*" is diagonal, and U € R™*™ and V' € R"*" are
unitary. (Keep the physical picture in mind!)
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SVD for Tensors?

Let A € R™* %" be an order-p tensor. The Tucker
decomposition of A is:

A:E.(Uh...,[]p)’

where X is diagonal, and the U;'s are orthonormal.
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Extension to Tensors

Unfortunately, the best rank-k approximation problem is ill-posed:

» The set of rank k tensors M), may not be a closed set, so
minimizer might not exist.”

"For example, see [V2014].
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Extension to Tensors

Unfortunately, the best rank-k approximation problem is ill-posed:

» The set of rank k tensors M), may not be a closed set, so
minimizer might not exist.”

» The best rank-1 tensor may have nothing to do with the best
rank-k tensor

"For example, see [V2014].
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Extension to Tensors

Unfortunately, the best rank-k approximation problem is ill-posed:

» The set of rank k tensors M), may not be a closed set, so
minimizer might not exist.”

» The best rank-1 tensor may have nothing to do with the best
rank-k tensor

» Deflating by the best rank-1 tensor may increase the rank

"For example, see [V2014].
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Border Rank

Definition

The border rank R(T') of a tensor T' is the minimum r such that T
is the limit of tensors of rank r. If R(T) # R(T'), we say that T is
an open boundary tensor (OBT).
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Tensor Decompositions

While no direct analog of SVD theorem is possible on tensors,
there are a few generalizations. We can relax Tucker’s criteria:

» Higher-order SVD: 3 no longer has to be diagonal

» CP decomposition: U, V, W no longer need to be
orthonormal®

8CP stands either for Canonical Polyadic or Candecomp,/Parafac.
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What about Spectral Theorem for Symmetric Tensors?

Problem: Which tensors in V®¢ have a ‘eigendecomposition’:
Ao 4 )\kv?d,

where the v;'s form an orthonormal basis?
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Action by Symmetric Group

Definition
Let &, denote the group of permutations on d elements. If 0 € &,
it acts on elements of V& py:

U(’l)l®‘--®vd)'—>U0(1)®-"®Ug(d).
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Symmetric Tensors

Definition
The subspace SV of symmetric tensors in V% is the collection of
tensors invariant to permutations o € G:

SV .= {T e V® . o(T)=T}.
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Odeco Tensor

Definition
A symmetric tensor T € SV is orthogonally decomposable
(odeco) if it can be written as:

where the v; € V' form an orthonormal basis of V.
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Odeco Tensors: d = 2

If d =2, then SV are just the symmetric matrices:

» the spectral theorem says that all of S?V are odeco.
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Odeco Tensors: d > 2

Theorem (Alexander-Hirschowitz)

For d > 2, the generic symmetric rank Rg of a tensor in S®C™ is

equal to:
— 1 d—1
=T
n d

except when (d,n) € {(3,5),(4,3),(4,4), (4,5)}, where it should
be increased by 1.°

®Theorem statement from [C2008].
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Odeco Tensors: d > 2

Theorem (Alexander-Hirschowitz)

For d > 2, the generic symmetric rank Rg of a tensor in S®C™ is

equal to:
— 1 d—1
=T
n d

except when (d,n) € {(3,5),(4,3),(4,4), (4,5)}, where it should
be increased by 1.°

» Note that the rank of a tensor over C lower bounds the rank
of a tensor over R.

9Theorem statement from [C2008].
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Odeco Tensors: d > 2

Rank of odeco tensor is n = not all of SV are odeco. In fact...
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Odeco Tensors: d > 2

Lemma
The dimension of the odeco variety in S?C" is (”;rl) 10

0L emma statement from [R2016].
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Odeco Tensors: d > 2

Lemma
The dimension of the odeco variety in S?C" is (”;rl) 10

» In contrast, the dimension of S4C™ is (”*fj‘l).

0L emma statement from [R2016].
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Symmetric Decomposition: computational complexity

Generally, finding a symmetric decomposition of a symmetric
tensor is NP-hard, it is computationally efficient for odeco tensors.
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Symmetric Decomposition: computational complexity

Generally, finding a symmetric decomposition of a symmetric
tensor is NP-hard, it is computationally efficient for odeco tensors.

» We'll now show the tensor power method.
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Eigenvectors of Symmetric Tensors

Definition
Let T € S?V. A unit vector v € V is an eigenvector of T with
eigenvalue A € R if:

T v®1 = ).

89 /113



Eigenvectors of Symmetric Tensors

Example
Let T = . Its eigenvectors are those v € V' such that:

d tzmes d—1 times

T- =(e1® ®e) (v® - ®0)
ey - v) l® ey
el(v)d ley = M.

Thus, the only eigenvector of T" is e;.
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Eigenvectors of Symmetric Tensors

Note that by definition, an eigenvector v must be of unit length.

Exercise

Equivalently, we could remove that restriction, and say that two
eigenpairs (A, v) and (X, v') are equivalent if there exists some
t # 0 such that:

v=tv A= ti2),

Explain why.

91 /113



Eigenvectors of Symmetric Tensors: d = 2

Remark

When d = 2, then SR™ are just the symmetric matrices.
Convince yourself that the definition of eigenvectors here coincide
with the usual one.
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Robust Eigenvectors

Definition
Let T € S?V. A unit vector v € V is a robust eigenvector of T' if
there is a closed ball B of radius € > 0 centered at v such that for

all ug € B, the repeated iteration of the map:
T . ®d—1

U e

SR TS

converges to v.11

" Definition statement from [R2016].
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Robust Eigenvectors

Definition

Let T € S?V. A unit vector v € V is a robust eigenvector of T' if
there is a closed ball B of radius ¢ > 0 centered at v such that for
all ug € B, the repeated iteration of the map:

T . ®d—1
U
A S

converges to v.11

> i.e. robust eigenvectors are attracting fixed points of ¢.

" Definition statement from [R2016].
93/113



Convergence to Robust Eigenvectors

Theorem
Suppose T € S3R™ is odeco,!?

k
T = Z )\ﬂ)?g.
i=1

1. The set of u € R™ that do not converge to some v; under
repeated iteration of ¢ has measure zero.

2. The set of robust eigenvectors of T is equal to {v1, ..., v}

2Theorem statement from [A2014].
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Uniqueness of Decomposition

Corollary
If T € S®R" is odeco, its decomposition is unique.
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Comparison to S?R"

Exercise
Let M € S?R™ be a symmetric matrix, with eigenvalues

AL > o> A\, > 0.

What is the set of robust eigenvectors of M ?
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Tensor Power Method

Algorithm 1 Tensor Power Method

input 1T € SIR™ an odeco tensor, d > 2
: Set E' < {} the collection of eigenpairs
repeat
Choose random u € R"
Iterate u < ¢(u) until convergence
Compute X using Tu®"! = \u
T T — \u®?
E+ EU{(\u)}.
until T'=0
return E

© NSO R
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Tensor Power Method: Analysis

Lemma (Convergence to eigenvector)
Let T' as before. Suppose that u € R satisfies

[A1{vr, u)| = [Aa(v2, u)| > -

Denote by ¢\!)(u) the output of t repeated iterations of ¢ on .

Then,

v~ 60| <0 (’;g;

)

That is, u converges to v, at a quadratic rate.*3

BLemma 5.1, [A2014].
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Matrix Power Method

Remark
In contrast, for symmetric positive definite matrices, the rate of
convergence is at upper bounded linearly in Ay /Xo.1*

» Prove as exercise. Why is the convergence for T’ € S3R"
quadratic?

*See also, [D1999]
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Perturbation of Odeco Tensor

In estimating an odeco tensor T', we might produce a tensor T
that is not odeco.
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Perturbation of Odeco Tensor

In estimating an odeco tensor T', we might produce a tensor T
that is not odeco.

» [A2014] designed an algorithm to iteratively estimate the
robust eigenvectors of 7.
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Robust Tensor Power Method

Algorithm 2 Robust Tensor Power Method (RTPM)

input tensor T € S3R¥, iterations L and N
1: fort=1to L do
2. Draw u, uniformly at random from unit sphere S*~1
3 Set u, + ¢ (u,).
4: end for
5. Let u* be the maximizer of 7" - u®3

6: u(—qf)N( 7 AT a®8,

7. return (4, \) and deflated tensor 7' — Aa®3.
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Analysis of Algorithm

In the following:
» T =T+ F € $3RF symmetric; T = Zle )\iv?g odeco
> Amin and Apax the min/max A;'s
> | Ellop, <€

Theorem (Thm. 5.1, [A2014])
Let 6 € (0,1). Ife=0O( “““) N = Q(log k + log log(2=2x), and
L = poly(k) log(%), running RTPMF will yield, w.p. 1 — 6,

=0 (L
o= =0 (5

k
ZXA;@ < O(e).

= 0O(e)
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Return to Topic Modeling

Setup: t topics, vocabulary size d, and 3-word long documents.
> topic h is chosen with probability wy,

» words x;'s are conditionally independent on topic h, according
to probability distribution P € A4~1
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Using Tensors

From the d possible words, e, ..., e4, generate the vector space of
all ‘words objects':

V=Re & &Rey =R
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Using Tensors

From the d possible words, e, ..., e4, generate the vector space of
all ‘words objects':

V =Re; ® - & Rey =R

We interpret € V' as a probability vector, where the weight on
the ith coordinate is the probability the word is e;.

104 /113



Using Tensors

Now, we want to create the space of all possible three-word
documents: V&3,
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Using Tensors

Now, we want to create the space of all possible three-word
documents: V&3,

» Since we assume that the choice of 3 words in a single
document is conditionally independent, this means that
expectation is multilinear.
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Using Tensors

Now, we want to create the space of all possible three-word
documents: V&3,

» Since we assume that the choice of 3 words in a single
document is conditionally independent, this means that
expectation is multilinear.

» In particular, let x1, 22, x3 be the random variable for the
words in a document:

E[z1 @ w2|h = j] = Elz1]h = j] @ E[z|h = j]
= Hj D Ky
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Using Tensors

Theorem (A2012)
If My = E[:L’l X :EQ] and My = E[l‘l X T2 X :Eg], then:

k

2

My = Zwi“z@
i=1

k
_ ®3
Mj = E wi b
i—1
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Whitening

We are almost at a point where we can use the Robust Tensor
Power Method to deduce the probabilities y; (i.e. the robust
eigenvectors) and the weights w; (i.e. the eigenvalues).
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Whitening

We are almost at a point where we can use the Robust Tensor
Power Method to deduce the probabilities y; (i.e. the robust
eigenvectors) and the weights w; (i.e. the eigenvalues).

> But we need to make sure the p;'s are orthonormal.
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Whitening

We can take advantage of Ms, which is just an invertible matrix,
conditioned upon:

» the vectors i1, ..., u; € R? are linearly independent,

> the scalars wy, ..., w; > 0 are strictly positive.
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Whitening

If the condition is satisfied, then there exists WW such that:
M2 . (VV7 W) — Ia

so that setting i; = ‘/w,-WTuZ- forms a set of orthonormal vectors.
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Whitening

It then follows that:
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Tensor Decomposition for LDA

In the LDA model, define the following:

My = E[z1]
Qg
My :=E . M, ® M
2 (21 ® x2] oy 1M @M
M3 = E[xl ® 9 @ 1’3]
(6%
— 2 (E[z1 @ 22 © My] + - -- + E[M; ® 21 ® o))
ap + 2

+ 20‘3 ®3
(ao + 2)(a0 + 1) !
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Tensor Decomposition for LDA

Theorem (A2012)
Let My, My, M3 as above. Then:

k
M, =N e
’ ; (oo + 1) Hi

k
20y
Ma =
3= (g + 2) (a0 + 1)

i=1

®3
7
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