Tensor Decompositions

Geelon So (ags2191)

July 19, 2018

Parameter Estimation

Problem: Let θ parametrize our model for the world.

- How to determine model parameter θ using empirical data?

Method of Moments

Let X be data we observe generated by model with θ.

Method of Moments

Let X be data we observe generated by model with θ.

1. $f(X)$ is a function that measures something about the data.

Method of Moments

Let X be data we observe generated by model with θ.

1. $f(X)$ is a function that measures something about the data.
2. From our data, we can form an empirical estimate:

$$
\widehat{\mathbb{E}}[f(X)] .
$$

Method of Moments

Let X be data we observe generated by model with θ.

1. $f(X)$ is a function that measures something about the data.
2. From our data, we can form an empirical estimate:

$$
\widehat{\mathbb{E}}[f(X)] .
$$

3. Then, we solve an inverse problem-which θ satisfies:

$$
\mathbb{E}_{\theta}[f(X)]=\widehat{\mathbb{E}}[f(X)]
$$

Method of Moments

Let X be data we observe generated by model with θ.

1. $f(X)$ is a function that measures something about the data.
2. From our data, we can form an empirical estimate:

$$
\widehat{\mathbb{E}}[f(X)] .
$$

3. Then, we solve an inverse problem-which θ satisfies:

$$
\mathbb{E}_{\theta}[f(X)]=\widehat{\mathbb{E}}[f(X)]
$$

This yields some estimate θ of the model parameter.

Concerns

1. Identifiability: is determining the true parameters θ possible?

Concerns

1. Identifiability: is determining the true parameters θ possible?
2. Consistency: will our estimate $\hat{\theta}$ converge to the true θ ?

Concerns

1. Identifiability: is determining the true parameters θ possible?
2. Consistency: will our estimate $\hat{\theta}$ converge to the true θ ?
3. Complexity: how many samples? how much time? (for ε, δ)

Concerns

1. Identifiability: is determining the true parameters θ possible?
2. Consistency: will our estimate $\hat{\theta}$ converge to the true θ ?
3. Complexity: how many samples? how much time? (for ε, δ)
4. Bias: how off is the model's best?

Tensor Decompositions in Parameter Estimation

High level:

- Construct $f(X)$ a tensor-valued function.
- Tensors have 'rigid' structure, so identifiability becomes easier.

Tensor Decompositions in Parameter Estimation

High level:

- Construct $f(X)$ a tensor-valued function.
- Tensors have 'rigid' structure, so identifiability becomes easier.
- There are efficient algorithms to decompose tensors.
- This allows us to retrieve model parameters.

Motivating Example I: Factor Analysis

Setup: There are n tests, k personality traits, and m students.

- each student has a linear combination of those traits
- each test is a linear function of those traits

Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and $C ?^{1}$
${ }^{1}$ This problem is originally due to Spearman, described in [M2016].

Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and $C ?^{1}$

- that is, is there a unique factorization:

$$
A=\sum_{i=1}^{k} B_{i} C_{i}^{T}
$$

${ }^{1}$ This problem is originally due to Spearman, described in [M2016].

Motivating Example I: Factor Analysis

Rotation Problem: if B and C are solutions, and $R \in \mathrm{GL}(k, \mathbb{R})$:

then so are $B R^{-1}$ and $R C$.

- thus B and C are not unique (and so not identifiable)

Motivating Example II: Topic Modeling

Setup: t topics, vocabulary size d, and 3 -word long documents.

- topic h is chosen with probability w_{h}
- words x_{i} 's are conditionally independent on topic h, according to probability distribution $P^{h} \in \Delta^{d-1}$

Motivating Example II: Topic Modeling

Notation: define the 3-way array M to be:

$$
M_{i j k}=\mathbb{P}\left[x_{1}=i, x_{2}=j, x_{3}=k\right]=\sum_{h=1}^{t} w_{h} P_{i}^{h} P_{j}^{h} P_{k}^{h}
$$

Motivating Example II: Topic Modeling

Problem: given M, can we deduce t, w_{h} 's and P^{h} 's? ${ }^{2}$

Motivating Examples: Comparison

Problem I

$$
A_{r s}=\sum_{i=1}^{k} B_{r i} C_{i s}
$$

- $\left[A_{r s}\right]$ is an $n \times m$ matrix.
- Fixing $i,\left[B_{r i} C_{i s}\right]$ is a $n \times m$ matrix with rank 1 .

Motivating Examples: Comparison

Problem II

$$
M_{i j k}=\sum_{h=1}^{t} w_{h} P_{i}^{h} P_{j}^{h} P_{k}^{h}
$$

- $\left[M_{i j k}\right]$ is an $d \times d \times d$ matrix.
- Fixing $h,\left[w_{h} P_{i}^{h} P_{j}^{h} P_{k}^{h}\right]$ is a $d \times d \times d$ array of 'rank' 1 .

Outline

- Coordinate-free linear algebra
- Multilinear algebra and tensors
- SVD and low-rank approximations
- Tensor decompositions
- Latent variable models

Coordinate-Free Linear Algebra

Figure 1: "Don't use coordinates unless someone holds a pickle to your head." J. M. Landsberg [L2012]

Dual Vector Space

Definition
Let V be a finite-dimensional vector space over \mathbb{R}. The dual vector space V^{*} is the space of all real-valued linear functions $f: V \rightarrow \mathbb{R}$.

Dual Vector Space

Definition
Let V be a finite-dimensional vector space over \mathbb{R}. The dual vector space V^{*} is the space of all real-valued linear functions $f: V \rightarrow \mathbb{R}$.

- We call vectors in V^{*} dual vectors.

Vector Space and its Dual

How should we make sense of V and V^{*} ?

Vector Space and its Dual

How should we make sense of V and V^{*} ?

- V is the space of objects or states

Vector Space and its Dual

How should we make sense of V and V^{*} ?

- V is the space of objects or states
- the dimension of V is how many degrees of freedom/ ways for objects to be different

Vector Space and its Dual

How should we make sense of V and V^{*} ?

- V is the space of objects or states
- the dimension of V is how many degrees of freedom/ ways for objects to be different
- V^{*} makes a real-valued measurement on an object/state

Vector Space and its Dual

Example (Traits)
Let V be the space of personality traits of an individual.

Vector Space and its Dual

Example (Traits)
Let V be the space of personality traits of an individual.

- Perhaps, secretly, we know that there are k independent traits, so $V=\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)$

Vector Space and its Dual

Example (Traits)
Let V be the space of personality traits of an individual.

- Perhaps, secretly, we know that there are k independent traits, so $V=\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)$
- We can design tests e^{1}, \ldots, e^{k} that measure how much an individual has those traits:

$$
e^{i}\left(e_{j}\right)=\delta_{i j} .
$$

Vector Space and its Dual

Example (Traits, cont.)
Say Alice has personality trait $v \in V$. Then, her ith trait has magnitude:

$$
\alpha^{i}:=e^{i}(v)
$$

which is a scalar in \mathbb{R}.

Vector Space and its Dual

Example (Traits, cont.)
Say Alice has personality trait $v \in V$. Then, her ith trait has magnitude:

$$
\alpha^{i}:=e^{i}(v)
$$

which is a scalar in \mathbb{R}.

- Since $v=\sum \alpha^{i} e_{i}$, we can represent her personality in coordinates with respect to the basis e_{i} by a 1D array

$$
[v]=\left[\begin{array}{c}
\alpha^{1} \\
\vdots \\
\alpha^{k}
\end{array}\right]
$$

Vector Space and its Dual

Example (Traits, cont.)
On the other hand, say we have a personality test $f \in V^{*}$.

Vector Space and its Dual

Example (Traits, cont.)
On the other hand, say we have a personality test $f \in V^{*}$.

- The amount that f tests for the i th trait is:

$$
\beta_{i}:=f\left(e^{i}\right),
$$

which is a scalar.

Vector Space and its Dual

Example (Traits, cont.)
On the other hand, say we have a personality test $f \in V^{*}$.

- The amount that f tests for the ith trait is:

$$
\beta_{i}:=f\left(e^{i}\right),
$$

which is a scalar.

- It follows that the e^{i} 's form a basis on V^{*}, and $f=\sum \beta_{i} e^{i}$. We can represent f in coordinates:

$$
[f]=\left[\begin{array}{lll}
\beta_{1} & \cdots & \beta_{k}
\end{array}\right] .
$$

Vector Space and its Dual

Example (Traits, cont.)

The score Alice gets on the test f is then:

$$
f(v)=\left[\begin{array}{lll}
\beta_{1} & \cdots & \beta_{k}
\end{array}\right]\left[\begin{array}{c}
\alpha^{1} \\
\vdots \\
\alpha^{k}
\end{array}\right]=\sum_{i=1}^{k} \alpha^{i} \beta_{i} .
$$

Vector Space and its Dual

Example (Traits, cont.)
Notice that we can define the operation $C: V^{*} \times V \rightarrow \mathbb{R}$

$$
C(f, v)=f(v)
$$

which conceptually means to 'take the measurement f on v '.

Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally substituted any (finite-dimensional) abstract vector space V by some \mathbb{R}^{n}.

Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally substituted any (finite-dimensional) abstract vector space V by some \mathbb{R}^{n}.

- The price was coordinates, $[v]=\sum \alpha^{i} e_{i}$.

Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally substituted any (finite-dimensional) abstract vector space V by some \mathbb{R}^{n}.

- The price was coordinates, $[v]=\sum \alpha^{i} e_{i}$.
- And real-valued linear map as $1 \times n$ matrix (more numbers).

Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and maps, coordinates might reduce clarity.

Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and maps, coordinates might reduce clarity.

- For now, just understand that V is a space of objects, while V^{*} is a space of devices that make linear measurements.

Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and maps, coordinates might reduce clarity.

- For now, just understand that V is a space of objects, while V^{*} is a space of devices that make linear measurements.
- These are dual objects, and there is a natural way we can apply two dual objects to each other.

Linear Transformations

Example (Traits, cont.)
Let's introduce a machine $T: V \rightarrow V$ that takes in a person and purges them of all personality except for the first trait, e_{1}.

Linear Transformations

Example (Traits, cont.)
Let's introduce a machine $T: V \rightarrow V$ that takes in a person and purges them of all personality except for the first trait, e_{1}.

- i.e. T projects $v \in V$ onto e_{1}.

Linear Transformations

Example (Traits, cont.)
Thus, given $v \in V$ the machine T :

Linear Transformations

Example (Traits, cont.)
Thus, given $v \in V$ the machine T :

1. measures the magnitude of trait e_{1} using $e^{1} \in V^{*}$

Linear Transformations

Example (Traits, cont.)
Thus, given $v \in V$ the machine T :

1. measures the magnitude of trait e_{1} using $e^{1} \in V^{*}$
2. outputs $e^{1}(v)$ attached to $e_{1} \in V$:

$$
T(v)=e_{1} \otimes e^{1}(v)
$$

where we informally use \otimes to mean 'attach'.

Linear Transformations

Example (Traits, cont.)
Thus, given $v \in V$ the machine T :

1. measures the magnitude of trait e_{1} using $e^{1} \in V^{*}$
2. outputs $e^{1}(v)$ attached to $e_{1} \in V$:

$$
T(v)=e_{1} \otimes e^{1}(v)
$$

where we informally use \otimes to mean 'attach'.
Naturally, we say that $T=e_{1} \otimes e^{1}$.

Linear Transformation

Example (Traits, cont.)
The matrix representation of $T=e_{1} \otimes e^{1}$ is:

$$
[T]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & & & 0
\end{array}\right]
$$

The first row of $[T]$ determines what $[T v]_{1}$ is; indeed the first row is the dual vector e^{1}.

Linear Transformations

More generally, let $T: V \rightarrow V$ be a linear transformation:

$$
T: V \rightarrow V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{n}
$$

so we can decompose T into n maps, $T^{i}: V \rightarrow \mathbb{R} e_{i}$.

Linear Transformations

More generally, let $T: V \rightarrow V$ be a linear transformation:

$$
T: V \rightarrow V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{n}
$$

so we can decompose T into n maps, $T^{i}: V \rightarrow \mathbb{R} e_{i}$.

- But notice that $\mathbb{R} e_{i}$ is isomorphic to \mathbb{R}.

Linear Transformations

More generally, let $T: V \rightarrow V$ be a linear transformation:

$$
T: V \rightarrow V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{n}
$$

so we can decompose T into n maps, $T^{i}: V \rightarrow \mathbb{R} e_{i}$.

- But notice that $\mathbb{R} e_{i}$ is isomorphic to \mathbb{R}.
- So really, T^{i} is a measurement in V^{*} (it produces a scalar), but we've attached the output to the vector e_{i} :

$$
e_{i} \otimes T^{i}
$$

Linear Transformations

More generally, let $T: V \rightarrow V$ be a linear transformation:

$$
T: V \rightarrow V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{n}
$$

so we can decompose T into n maps, $T^{i}: V \rightarrow \mathbb{R} e_{i}$.

- But notice that $\mathbb{R} e_{i}$ is isomorphic to \mathbb{R}.
- So really, T^{i} is a measurement in V^{*} (it produces a scalar), but we've attached the output to the vector e_{i} :

$$
e_{i} \otimes T^{i}
$$

- Recomposing T, we get:

$$
T=\sum_{i=1}^{n} e_{i} \otimes T^{i}
$$

Linear Transformations

Relying on how we usually use matrices,

the i th row of $[T]$ gives the coordinate representation of the dual vector $T^{i} \in V^{*}$ that we then attach to e_{i}.

Linear Transformations

Definition

Let $V \otimes V^{*}$ be the vector space of all linear maps $T: V \rightarrow V$.

Linear Transformations

Definition

Let $V \otimes V^{*}$ be the vector space of all linear maps $T: V \rightarrow V$.

- Objects in $V \otimes V^{*}$ are linear combinations of $v \otimes f$, where $v \in V$ and $f \in V^{*}$.

Linear Transformations

Definition

Let $V \otimes V^{*}$ be the vector space of all linear maps $T: V \rightarrow V$.

- Objects in $V \otimes V^{*}$ are linear combinations of $v \otimes f$, where $v \in V$ and $f \in V^{*}$.
- The action of $(v \otimes f)$ on a vector $u \in V$ is:

$$
(v \otimes f)(u)=v \otimes f(u)=f(u) \cdot v
$$

Other Views

Stepping back a bit, we have objects $v \in V$ and dual objects $f \in V^{*}$. We stuck them together producing $v \otimes f$. It is:

Other Views

Stepping back a bit, we have objects $v \in V$ and dual objects $f \in V^{*}$. We stuck them together producing $v \otimes f$. It is:

- a linear map $V \rightarrow V$

Other Views

Stepping back a bit, we have objects $v \in V$ and dual objects $f \in V^{*}$. We stuck them together producing $v \otimes f$. It is:

- a linear map $V \rightarrow V$
- a linear map $V^{*} \rightarrow V^{*}$, with $g \mapsto g(v) \cdot f$

Other Views

Stepping back a bit, we have objects $v \in V$ and dual objects $f \in V^{*}$. We stuck them together producing $v \otimes f$. It is:

- a linear map $V \rightarrow V$
- a linear map $V^{*} \rightarrow V^{*}$, with $g \mapsto g(v) \cdot f$
- a bilinear map $V^{*} \times V \rightarrow \mathbb{R}$, with $(g, u) \mapsto g(v) \cdot f(u)$

Wire Diagram

Coordinate-Free Objects

Importantly, our definitions of V, V^{*} and $V \otimes V^{*}$ are coordinate-free and do not depend on a basis. Thus, each have 'physical reality' outside of a basis:

- object
- measuring-device
- object-attached-to-measuring-device

Tensors

God created the matrix.
The Devil created the tensor.
—G. Ottaviani [O2014]

Tensors: definitions

1. coordinate-free
2. coordinate
3. formal
4. multilinear

The Matrix: physical picture

We can describe a matrix as this object in $V \otimes V^{*}$:

Tensor Product: physical picture

Contraction: physical picture

Tensor Product: coordinate definition

The tensor product of \mathbb{R}^{n} and \mathbb{R}^{m} is the space

$$
\mathbb{R}^{n} \otimes \mathbb{R}^{m}=\mathbb{R}^{n \times m}
$$

If e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} are their bases, then

$$
e_{i} \otimes f_{j}
$$

form a basis on $\mathbb{R}^{n} \otimes \mathbb{R}^{m}$.

Tensor Product: coordinate definition

We think of an element of $\mathbb{R}^{n} \otimes \mathbb{R}^{m}$ as an array of size $n \times m$. Given any $u \in \mathbb{R}^{n}$ and $v \in \mathbb{R}^{m}$, their tensor product is:

$$
(u \otimes v)_{i j}=u_{i} v_{j}
$$

coinciding with the usual outer product $u v^{T}$.

Tensor Product: formal definition

Definition

Let V and W be vector spaces. The tensor product $V \otimes W$ is the vector space generated over elements of the form $v \otimes w$ modulo the equivalence:

$$
\begin{aligned}
& (\lambda v) \otimes w=\lambda(v \otimes w)=v \otimes(\lambda w) \\
& \left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w \\
& v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}
\end{aligned}
$$

where $\lambda \in \mathbb{R}$ and $v, v_{1}, v_{2} \in V$ and $w, w_{1}, w_{2} \in W$.

Tensor Product: formal definition

A general element of $V \otimes W$ is of the form (nonuniquely):

$$
\sum_{i=1}^{\ell} \lambda_{i} v_{i} \otimes w_{i}
$$

where $\lambda_{i} \in \mathbb{R}$ and $v_{i} \in V$ and $w_{i} \in W$.

Tensor Product: basis

Let $v_{1}, \ldots, v_{n} \in V$ and $w_{1}, \ldots, w_{m} \in W$ be bases. Then, the elements of the form

$$
v_{i} \otimes w_{j}
$$

form a basis for $V \otimes W$, where $1 \leq i \leq n$ and $1 \leq j \leq m$.

Tensor Product: formal definition

Definition

If V_{1}, \ldots, V_{n} are vector spaces, then $V_{1} \otimes \cdots \otimes V_{n}$ is the vector space generated by taking the iterated tensor product ${ }^{3}$

$$
V_{1} \otimes \cdots \otimes V_{n}:=\left(\left(\left(V_{1} \otimes V_{2}\right) \otimes V_{3}\right) \otimes \cdots V_{n}\right)
$$

- We say that a tensor in this tensor product space has order n.

[^0]
Tensor Product: coordinate picture

We arrive back to the picture of the n-dimensional array of coordinates. For example, here $T \in U \otimes V \otimes W$ is:

Multilinear Function

Definition

Let V_{1}, \ldots, V_{n}, W be vector spaces. A map $A: V_{1} \times \cdots \times V_{n} \rightarrow W$ is multilinear if it is linear in each argument.

- That is, for all $v_{k} \in V_{k}$ and for all i,

$$
A\left(v_{1}, \ldots v_{i-1}, \cdot, v_{i+1}, \ldots, v_{n}\right): V_{i} \rightarrow W
$$

is a linear map.

Multilinear Function

Exercise

If $A: V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$ is multilinear, is it linear? What is a basis of $V_{1} \times \cdots \times V_{n}$ as a vector space?

Multilinear Function

Example
Let $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=x y z$.
Example
Let $X: V \times V^{*} \rightarrow V \otimes V^{*}$ be defined by $X(v, f)=v \otimes f$.

Multilinear Function: intuition

Let $A: V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$ be multilinear.

Multilinear Function: intuition

Let $A: V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$ be multilinear.

- Say V_{1} are the individual's personality traits
V_{n} are drugs the individual has taken

Multilinear Function: intuition

Let $A: V_{1} \times \cdots \times V_{n} \rightarrow \mathbb{R}$ be multilinear.

- Say V_{1} are the individual's personality traits
V_{n} are drugs the individual has taken
- $A\left(v_{1}, \ldots, v_{n}\right)$ is how well the individual performs on a test, given their characteristics $\left(v_{1}, \ldots, v_{n}\right)$.

Multilinear Function: intuition

Multilinearity implies:

$$
A\left(v_{1}, \ldots, 2 v_{n}\right)=2 A\left(v_{1}, \ldots, v_{n}\right)
$$

meaning that if Alice are on twice as many drugs, she perform twice as well/poorly.

Multilinear Function: intuition

On the other hand, if A is merely linear:

$$
A\left(v_{1}, \ldots, 2 v_{n}\right)=A\left(v_{1}, \ldots, v_{n}\right)+A\left(0, \ldots, v_{n}\right)
$$

Here, each coordinate v_{1}, \ldots, v_{n} is independent from each other.

Multilinear Function: intuition

Conceptually, a multilinear function entangles each of the coordinates together.

Multilinear Function: intuition

Conceptually, a multilinear function entangles each of the coordinates together.

- The linear function treats each coordinate independently.

Tensor Product: multilinear

Let V_{1}, \ldots, V_{n} be vector spaces. The tensor product attaches the objects $\left(v_{1}, \ldots, v_{n}\right)$ together into the single:

$$
v_{1} \otimes \cdots \otimes v_{n} \in V_{1} \otimes \cdots \otimes V_{n}
$$

in such a way that any multilinear map $A: V_{1} \times \cdots V_{n} \rightarrow W$ becomes linear $A: V_{1} \otimes \cdots \otimes V_{n} \rightarrow W$.

Tensor Space as Vector Space

Contraction

Tensor Product: currying

Notation

Let $V^{\otimes d}$ denote the tensor space $V \otimes{ }^{d \text { times }} \otimes V$.

- Let $v^{\otimes d}=v \otimes \stackrel{d \text { times }}{\cdots} \otimes v$ for $v \in V$.

Decomposable/Pure Tensor

Definition
A tensor $T \in V_{1} \otimes \cdots \otimes V_{n}$ is decomposable or pure if there are vectors $v_{1} \in V_{1}, \ldots, v_{n} \in V_{n}$ such that:

$$
T=v_{1} \otimes \cdots \otimes v_{n}
$$

Decomposable Matrix

Let $M \in V \otimes V^{*}$ is decomposable, so $M=v \otimes f$.
Exercise
Describe the action of $M: V \rightarrow V$. What is its rank? What would its singular value decomposition look like?

Decomposable Matrix

Let $M \in V \otimes V^{*}$ is decomposable, so $M=v \otimes f$.
Exercise
Describe the action of $M: V \rightarrow V$. What is its rank? What would its singular value decomposition look like?

- Physically, it is a 'machine' that is sensitive to one direction, and spits out a vector also only in one direction.

Decomposable Matrix

Let $M \in V \otimes V^{*}$ is decomposable, so $M=v \otimes f$.
Exercise
Describe the action of $M: V \rightarrow V$. What is its rank? What would its singular value decomposition look like?

- Physically, it is a 'machine' that is sensitive to one direction, and spits out a vector also only in one direction.
- What if $M=\sum_{i} v_{i} \otimes f^{i}$?

Rank

Definition

The rank of a tensor $T \in V_{1} \otimes \cdots \otimes V_{n}$ is the minimum number r such that T is a sum of r decomposable tensors:

$$
\begin{aligned}
T & =\sum_{i=1}^{r} T_{i} \\
& =\sum_{i=1}^{r} v_{1}^{(i)} \otimes \cdots \otimes v_{n}^{(i)} .
\end{aligned}
$$

Rank of Matrix

The tensor rank coincides with the matrix rank. However, intuition from matrices don't carry over to tensors.

- row rank $=$ column rank is generally false for tensors
- rank \leq minimum dimension is also false

Rank of Matrix

The tensor rank coincides with the matrix rank. However, intuition from matrices don't carry over to tensors.

- row rank $=$ column rank is generally false for tensors
- rank \leq minimum dimension is also false In fact, computing the rank of a tensor is NP-hard.

Computational Complexity

Problem	Complexity
Bivariate Matrix Functions over \mathbb{R}, \mathbb{C}	Undecidable (Proposition 12.2)
Bilinear System over \mathbb{R}, \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over \mathbb{R}	NP-hard (Theorem 1.3)
Approximating Eigenvector over \mathbb{R}	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over \mathbb{R}	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over \mathbb{R}	NP-hard (Theorem 10.2)
Approximating Spectral Norm over \mathbb{R}	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over \mathbb{R} or \mathbb{C}	NP-hard (Theorem 8.2)
Enumerating Eigenvectors over \mathbb{R}	\#P-hard (Corollary 1.16)
Combinatorial Hyperdeterminant	NP-, \#P-, VNP-hard (Theorems 4.1, 4.2, Corollary 4.3)
Geometric Hyperdeterminant	Conjectures 1.9, 13.1
Symmetric Rank	Conjecture 13.2
Bilinear Programming	Conjecture 13.4
Bilinear Least Squares	Conjecture 13.5

Note: Except for positive definiteness and the combinatorial hyperdeterminant, which apply to 4 -tensors, all problems refer to the 3 -tensor case.

Figure 2: "Most tensor problems are NP-hard", Hillar \& Lim, [H2013]

Why do we care about rank?

We'll take a hint from singular value decomposition (SVD) for matrices.

- Since we want to begin talking about SVD, we need a notion of inner product on our space.

Choice of Basis

Remark

If V is a finite-dimensional vector space, then a choice of basis $e_{1}, \ldots, e_{k} \in V$ induces a dual basis $e^{1}, \ldots, e^{k} \in V^{*}$ and an inner product/norm on V and V^{*} :

$$
\langle u, v\rangle_{V}:=[u]^{T}[v] \quad\langle f, g\rangle_{V^{*}}:=[f][g]^{T},
$$

where $[u]^{T}[v]$ and $[f][g]^{T}$, we mean the standard dot product on coordinates.

Choice of Basis

In short, a choice of basis is (essentially) equivalent to a choice of inner product. In the following, we can identify V, V^{*}, and \mathbb{R}^{n}.

Singular Value Decomposition

Theorem (SVD, coordinate)
Any real $m \times n$ matrix has the SVD

$$
A=U \Sigma V^{T}
$$

where U and V^{T} are orthogonal, and $\Sigma=\operatorname{Diag}\left(\sigma_{1}, \sigma_{2}, \ldots\right)$, with $\sigma_{1} \geq \sigma_{2} \geq \cdots 0 .^{4}$

Singular Value Decomposition: physical version

For simplicity, we'll state the version for $A \in V \otimes V^{*}$, where adjoints are implicit due to the identification of V with V^{*} (from the choice of basis).

Theorem (SVD, coordinate-free)
Let $A \in V \otimes V^{*}$. Then there is a decomposition (SVD)

$$
A=\sum_{i=1}^{k} \sigma_{i}\left(v_{i} \otimes f^{i}\right)
$$

where $\sigma_{1} \geq \cdots \geq \sigma_{k}>0$ such that the v_{i} 's are unit vectors and pairwise orthogonal, and similarly for the f^{i} 's.

Singular Value Decomposition: physical picture

Singular Value Decomposition: geometric version

Theorem (SVD, geometric)
Let $A \in \mathbb{R}^{m \times n}$, and let $U \Sigma V^{t}$ be its SVD, where
$\Sigma=\Sigma_{1}+\cdots+\Sigma_{k}$ (again, we assume $\sigma_{1} \geq \cdots \geq \sigma_{k}$). Then, $U \Sigma_{1} V^{T}$ is the best rank-1 approximation of A :

$$
\left\|A-U \Sigma_{1} V^{T}\right\|_{F} \leq\|A-X\|_{F}
$$

for all matrices X of rank $1 .{ }^{5}$

Singular Value Decomposition: geometric version

Theorem (SVD, geometric)
Let $A \in \mathbb{R}^{m \times n}$, and let $U \Sigma V^{t}$ be its SVD, where
$\Sigma=\Sigma_{1}+\cdots+\Sigma_{k}$ (again, we assume $\sigma_{1} \geq \cdots \geq \sigma_{k}$). Then, $U \Sigma_{1} V^{T}$ is the best rank-1 approximation of A :

$$
\left\|A-U \Sigma_{1} V^{T}\right\|_{F} \leq\|A-X\|_{F}
$$

for all matrices X of rank $1 .{ }^{5}$

Singular Value Decomposition: geometric version

In fact, we can iteratively generate $U \Sigma_{i+1} V^{T}$ by finding the best rank-1 approximation of A after being deflated of its first i singular values:

$$
A-\left(U \Sigma_{1} V^{T}+\cdots+U \Sigma_{i} V^{T}\right)
$$

Singular Value Decomposition: geometric picture

Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is less than k ?

Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is less than k ?

- Determinants of $k \times k$ minors.

Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is less than k ?

- Determinants of $k \times k$ minors.
- The determinant is a polynomial equation over the $e_{i} \otimes f^{j}$'s.

Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is less than k ?

- Determinants of $k \times k$ minors.
- The determinant is a polynomial equation over the $e_{i} \otimes f^{j}$'s.
- The subset of $m \times n$ matrices:

$$
\mathcal{M}_{k}=\{m \times n \text { matrices of rank } \leq k\}
$$

is the zero set of some set of polynomial equations.

Singular Value Decomposition: geometric version

Note that the \mathcal{M}_{k} 's contain each other:

$$
0=\mathcal{M}_{0} \subset \mathcal{M}_{1} \subset \cdots \subset \mathcal{M}_{\min \{m, n\}}=\mathbb{R}^{m \times n}
$$

Singular Value Decomposition: geometric version

Let $A=U \Sigma V^{T}$ be the SVD and $1 \leq r \leq \operatorname{rank}(A)$.
Theorem (Eckart-Young)
All critical points of the distance function from A to the (smooth) variety $\mathcal{M}_{r} \backslash \mathcal{M}_{r-1}$ are given by:

$$
U\left(\Sigma_{i_{1}}+\cdots+\Sigma_{i_{r}}\right) V^{T}
$$

where $1 \leq i_{p} \leq \operatorname{rank}(A)$. If the nonzero singular values of A are distinct, then the number of critical points is $(\underset{r}{\operatorname{rank}(A)}) .{ }^{6}$

Singular Value Decomposition: tensor notation

Notice that SVD states that any matrix $A \in \mathbb{R}^{m \times n}$ may be decomposed into:

$$
A=\Sigma \cdot(U, V)
$$

where $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are unitary. (Keep the physical picture in mind!)

SVD for Tensors?

Let $A \in \mathbb{R}^{n_{1} \times \cdots \times n_{p}}$ be an order- p tensor. The Tucker decomposition of A is:

$$
A=\Sigma \cdot\left(U_{1}, \cdots, U_{p}\right)
$$

where Σ is diagonal, and the U_{i} 's are orthonormal.

Extension to Tensors

Unfortunately, the best rank- k approximation problem is ill-posed:

- The set of rank k tensors \mathcal{M}_{k} may not be a closed set, so minimizer might not exist. ${ }^{7}$
${ }^{7}$ For example, see [V2014].

Extension to Tensors

Unfortunately, the best rank- k approximation problem is ill-posed:

- The set of rank k tensors \mathcal{M}_{k} may not be a closed set, so minimizer might not exist. ${ }^{7}$
- The best rank-1 tensor may have nothing to do with the best rank- k tensor
${ }^{7}$ For example, see [V2014].

Extension to Tensors

Unfortunately, the best rank- k approximation problem is ill-posed:

- The set of rank k tensors \mathcal{M}_{k} may not be a closed set, so minimizer might not exist. ${ }^{7}$
- The best rank-1 tensor may have nothing to do with the best rank- k tensor
- Deflating by the best rank-1 tensor may increase the rank
${ }^{7}$ For example, see [V2014].

Border Rank

Definition

The border rank $\underline{R}(T)$ of a tensor T is the minimum r such that T is the limit of tensors of rank r. If $R(T) \neq \underline{R}(T)$, we say that T is an open boundary tensor (OBT).

Tensor Decompositions

While no direct analog of SVD theorem is possible on tensors, there are a few generalizations. We can relax Tucker's criteria:

- Higher-order SVD: Σ no longer has to be diagonal
- CP decomposition: U, V, W no longer need to be orthonormal ${ }^{8}$

[^1]
What about Spectral Theorem for Symmetric Tensors?

Problem: Which tensors in $V^{\otimes d}$ have a 'eigendecomposition':

$$
\lambda_{1} v_{1}^{\otimes d}+\cdots+\lambda_{k} v_{k}^{\otimes d}
$$

where the v_{i} 's form an orthonormal basis?

Action by Symmetric Group

Definition

Let \mathfrak{S}_{d} denote the group of permutations on d elements. If $\sigma \in \mathfrak{S}$, it acts on elements of $V^{\otimes d}$ by:

$$
\sigma\left(v_{1} \otimes \cdots \otimes v_{d}\right) \mapsto v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(d)} .
$$

Symmetric Tensors

Definition

The subspace $S^{d} V$ of symmetric tensors in $V^{\otimes d}$ is the collection of tensors invariant to permutations $\sigma \in \mathbb{S}$:

$$
S^{d} V:=\left\{T \in V^{\otimes d}: \sigma(T)=T\right\}
$$

Odeco Tensor

Definition
A symmetric tensor $T \in S^{d} V$ is orthogonally decomposable (odeco) if it can be written as:

$$
T=\sum_{i=1}^{k} \lambda_{i} v_{i}^{\otimes d}
$$

where the $v_{i} \in V$ form an orthonormal basis of V.

Odeco Tensors: $d=2$

If $d=2$, then $S^{d} V$ are just the symmetric matrices:

- the spectral theorem says that all of $S^{d} V$ are odeco.

Odeco Tensors: $d>2$

Theorem (Alexander-Hirschowitz)
For $d>2$, the generic symmetric rank \bar{R}_{S} of a tensor in $S^{d} \mathbb{C}^{n}$ is equal to:

$$
\bar{R}_{S}=\left\lceil\frac{1}{n}\binom{n+d-1}{d}\right\rceil
$$

except when $(d, n) \in\{(3,5),(4,3),(4,4),(4,5)\}$, where it should be increased by $1 .{ }^{9}$

[^2]
Odeco Tensors: $d>2$

Theorem (Alexander-Hirschowitz)
For $d>2$, the generic symmetric rank \bar{R}_{S} of a tensor in $S^{d} \mathbb{C}^{n}$ is equal to:

$$
\bar{R}_{S}=\left\lceil\frac{1}{n}\binom{n+d-1}{d}\right\rceil \text {, }
$$

except when $(d, n) \in\{(3,5),(4,3),(4,4),(4,5)\}$, where it should be increased by $1 .{ }^{9}$

- Note that the rank of a tensor over \mathbb{C} lower bounds the rank of a tensor over \mathbb{R}.

Odeco Tensors: $d>2$

Rank of odeco tensor is $n \Longrightarrow$ not all of $S^{d} V$ are odeco. In fact...

Odeco Tensors: $d>2$

Lemma
 The dimension of the odeco variety in $S^{d} \mathbb{C}^{n}$ is $\binom{n+1}{2},{ }^{10}$

${ }^{10}$ Lemma statement from [R2016].

Odeco Tensors: $d>2$

Lemma

The dimension of the odeco variety in $S^{d} \mathbb{C}^{n}$ is $\binom{n+1}{2},{ }^{10}$

- In contrast, the dimension of $S^{d} \mathbb{C}^{n}$ is $\binom{n+d-1}{d}$.

[^3]
Symmetric Decomposition: computational complexity

Generally, finding a symmetric decomposition of a symmetric tensor is NP-hard, it is computationally efficient for odeco tensors.

Symmetric Decomposition: computational complexity

Generally, finding a symmetric decomposition of a symmetric tensor is NP-hard, it is computationally efficient for odeco tensors.

- We'll now show the tensor power method.

Eigenvectors of Symmetric Tensors

Definition

Let $T \in S^{d} V$. A unit vector $v \in V$ is an eigenvector of T with eigenvalue $\lambda \in \mathbb{R}$ if:

$$
T \cdot v^{\otimes d-1}=\lambda v
$$

Eigenvectors of Symmetric Tensors

Example

Let $T=e_{1}^{\otimes d}$. Its eigenvectors are those $v \in V$ such that:

$$
\begin{aligned}
T \cdot v^{\otimes d-1}: & =\left(e_{1} \otimes^{d \text { times }} \otimes e_{1}\right) \cdot\left(v \otimes^{d-1} \cdots{ }^{\text {times }} \otimes v\right) \\
& =\left(e_{1} \cdot v\right)^{d-1} \otimes e_{1} \\
& =e^{1}(v)^{d-1} e_{1}=\lambda v .
\end{aligned}
$$

Thus, the only eigenvector of T is e_{1}.

Eigenvectors of Symmetric Tensors

Note that by definition, an eigenvector v must be of unit length.
Exercise
Equivalently, we could remove that restriction, and say that two eigenpairs (λ, v) and $\left(\lambda^{\prime}, v^{\prime}\right)$ are equivalent if there exists some $t \neq 0$ such that:

$$
v=t v^{\prime} \quad \lambda=t^{d-2} \lambda^{\prime}
$$

Explain why.

Eigenvectors of Symmetric Tensors: $d=2$

Remark
When $d=2$, then $S^{d} \mathbb{R}^{n}$ are just the symmetric matrices.
Convince yourself that the definition of eigenvectors here coincide with the usual one.

Robust Eigenvectors

Definition
Let $T \in S^{d} V$. A unit vector $v \in V$ is a robust eigenvector of T if there is a closed ball B of radius $\epsilon>0$ centered at v such that for all $u_{0} \in B$, the repeated iteration of the map:

$$
\phi:=u \mapsto \frac{T \cdot u^{\otimes d-1}}{\left\|T \cdot u^{\otimes d-1}\right\|}
$$

converges to $v .{ }^{11}$
${ }^{11}$ Definition statement from [R2016].

Robust Eigenvectors

Definition
Let $T \in S^{d} V$. A unit vector $v \in V$ is a robust eigenvector of T if there is a closed ball B of radius $\epsilon>0$ centered at v such that for all $u_{0} \in B$, the repeated iteration of the map:

$$
\phi:=u \mapsto \frac{T \cdot u^{\otimes d-1}}{\left\|T \cdot u^{\otimes d-1}\right\|}
$$

converges to $v .{ }^{11}$

- i.e. robust eigenvectors are attracting fixed points of ϕ.

[^4]
Convergence to Robust Eigenvectors

Theorem
Suppose $T \in S^{3} \mathbb{R}^{n}$ is odeco, ${ }^{12}$

$$
T=\sum_{i=1}^{k} \lambda_{i} v_{i}^{\otimes 3}
$$

1. The set of $u \in \mathbb{R}^{n}$ that do not converge to some v_{i} under repeated iteration of ϕ has measure zero.
2. The set of robust eigenvectors of T is equal to $\left\{v_{1}, \ldots, v_{k}\right\}$.

Uniqueness of Decomposition

Corollary
If $T \in S^{3} \mathbb{R}^{n}$ is odeco, its decomposition is unique.

Comparison to $S^{2} \mathbb{R}^{n}$

Exercise

Let $M \in S^{2} \mathbb{R}^{n}$ be a symmetric matrix, with eigenvalues

$$
\lambda_{1}>\cdots>\lambda_{n}>0 .
$$

What is the set of robust eigenvectors of M ?

Tensor Power Method

Algorithm 1 Tensor Power Method

input $T \in S^{d} \mathbb{R}^{n}$ an odeco tensor, $d>2$
1: Set $E \leftarrow\}$ the collection of eigenpairs
2: repeat
3: \quad Choose random $u \in \mathbb{R}^{n}$
4: Iterate $u \leftarrow \phi(u)$ until convergence
5: \quad Compute λ using $T u^{d-1}=\lambda u$
6: $\quad T \leftarrow T-\lambda u^{\otimes d}$
7: $\quad E \leftarrow E \cup\{(\lambda, u)\}$.
8: until $T=0$
9: return E

Tensor Power Method: Analysis

Lemma (Convergence to eigenvector)
Let T as before. Suppose that $u \in \mathbb{R}^{n}$ satisfies

$$
\left|\lambda_{1}\left\langle v_{1}, u\right\rangle\right| \geq\left|\lambda_{2}\left\langle v_{2}, u\right\rangle\right| \geq \cdots .
$$

Denote by $\phi^{(t)}(u)$ the output of t repeated iterations of ϕ on u. Then,

$$
\left\|v_{1}-\phi^{(t)}(u)\right\|^{2} \leq O\left(\left|\frac{\left.\lambda_{2}\left\langle v_{2}, u\right\rangle\right\rangle}{\lambda_{1}\left\langle v_{2}, u\right\rangle}\right|^{2^{t}}\right) .
$$

That is, u converges to v_{1} at a quadratic rate. ${ }^{13}$

Matrix Power Method

Remark
In contrast, for symmetric positive definite matrices, the rate of convergence is at upper bounded linearly in $\lambda_{1} / \lambda_{2} .{ }^{14}$

- Prove as exercise. Why is the convergence for $T \in S^{3} \mathbb{R}^{n}$ quadratic?

Perturbation of Odeco Tensor

In estimating an odeco tensor T, we might produce a tensor \hat{T} that is not odeco.

Perturbation of Odeco Tensor

In estimating an odeco tensor T, we might produce a tensor \hat{T} that is not odeco.

- [A2014] designed an algorithm to iteratively estimate the robust eigenvectors of T.

Robust Tensor Power Method

Algorithm 2 Robust Tensor Power Method (RTPM)

input tensor $\hat{T} \in S^{3} \mathbb{R}^{k}$, iterations L and N
1: for $\tau=1$ to L do
2: Draw u_{τ} uniformly at random from unit sphere S^{k-1}
3: \quad Set $u_{\tau} \leftarrow \phi^{(N)}\left(u_{\tau}\right)$.
4: end for
5: Let u_{τ}^{*} be the maximizer of $\hat{T} \cdot u_{\tau}^{\otimes 3}$
6: $\hat{u} \leftarrow \phi^{N}\left(u_{\tau}^{*}\right), \hat{\lambda} \leftarrow \hat{T} \cdot \hat{u}^{\otimes 3}$.
7: return $(\hat{u}, \hat{\lambda})$ and deflated tensor $\hat{T}-\hat{\lambda} \hat{u}^{\otimes 3}$.

Analysis of Algorithm

In the following:

- $\hat{T}=T+E \in S^{3} \mathbb{R}^{k}$ symmetric; $T=\sum_{i=1}^{k} \lambda_{i} v_{i}^{\otimes 3}$ odeco
- $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ the min $/ \max \lambda_{i}{ }^{\prime} \mathrm{s}$
- $\|E\|_{\text {op }} \leq \epsilon$

Theorem (Thm. 5.1, [A2014])
Let $\delta \in(0,1)$. If $\epsilon=O\left(\frac{\lambda_{\text {min }}}{k}\right), N=\Omega\left(\log k+\log \log \left(\frac{\lambda_{\text {max }}}{\epsilon}\right)\right.$, and $L=\operatorname{poly}(k) \log \left(\frac{1}{\delta}\right)$, running RTPM k will yield, w.p. $1-\delta$,

$$
\begin{gathered}
\left\|v_{i}-\hat{v}_{i}\right\|=O\left(\frac{\epsilon}{\lambda_{i}}\right) \quad\left|\lambda_{i}-\hat{\lambda}_{i}\right|=O(\epsilon) \\
\left\|T-\sum_{j=1}^{k} \hat{\lambda}_{j} \hat{v}_{j}^{\otimes 3}\right\| \leq O(\epsilon)
\end{gathered}
$$

Return to Topic Modeling

Setup: t topics, vocabulary size d, and 3 -word long documents.

- topic h is chosen with probability w_{h}
- words x_{i} 's are conditionally independent on topic h, according to probability distribution $P^{h} \in \Delta^{d-1}$

Using Tensors

From the d possible words, e_{1}, \ldots, e_{d}, generate the vector space of all 'words objects':

$$
V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{d}=\mathbb{R}^{d}
$$

Using Tensors

From the d possible words, e_{1}, \ldots, e_{d}, generate the vector space of all 'words objects':

$$
V=\mathbb{R} e_{1} \oplus \cdots \oplus \mathbb{R} e_{d}=\mathbb{R}^{d}
$$

We interpret $x \in V$ as a probability vector, where the weight on the i th coordinate is the probability the word is e_{i}.

Using Tensors

Now, we want to create the space of all possible three-word documents: $V^{\otimes 3}$.

Using Tensors

Now, we want to create the space of all possible three-word documents: $V^{\otimes 3}$.

- Since we assume that the choice of 3 words in a single document is conditionally independent, this means that expectation is multilinear.

Using Tensors

Now, we want to create the space of all possible three-word documents: $V^{\otimes 3}$.

- Since we assume that the choice of 3 words in a single document is conditionally independent, this means that expectation is multilinear.
- In particular, let x_{1}, x_{2}, x_{3} be the random variable for the words in a document:

$$
\begin{aligned}
\mathbb{E}\left[x_{1} \otimes x_{2} \mid h=j\right] & =\mathbb{E}\left[x_{1} \mid h=j\right] \otimes \mathbb{E}\left[x_{2} \mid h=j\right] \\
& =\mu_{j} \otimes \mu_{j} .
\end{aligned}
$$

Using Tensors

Theorem (A2012)
If $M_{2}:=\mathbb{E}\left[x_{1} \otimes x_{2}\right]$ and $M_{2}:=\mathbb{E}\left[x_{1} \otimes x_{2} \otimes x_{3}\right]$, then:

$$
\begin{aligned}
& M_{2}=\sum_{i=1}^{k} w_{i} \mu_{i}^{\otimes 2} \\
& M_{3}=\sum_{i=1}^{k} w_{i} \mu_{i}^{\otimes 3}
\end{aligned}
$$

Whitening

We are almost at a point where we can use the Robust Tensor Power Method to deduce the probabilities μ_{i} (i.e. the robust eigenvectors) and the weights w_{i} (i.e. the eigenvalues).

Whitening

We are almost at a point where we can use the Robust Tensor Power Method to deduce the probabilities μ_{i} (i.e. the robust eigenvectors) and the weights w_{i} (i.e. the eigenvalues).

- But we need to make sure the μ_{i} 's are orthonormal.

Whitening

We can take advantage of M_{2}, which is just an invertible matrix, conditioned upon:

- the vectors $\mu_{1}, \ldots, \mu_{k} \in \mathbb{R}^{d}$ are linearly independent,
- the scalars $w_{1}, \ldots, w_{k}>0$ are strictly positive.

Whitening

If the condition is satisfied, then there exists W such that:

$$
M_{2} \cdot(W, W)=I
$$

so that setting $\bar{\mu}_{i}=\sqrt{w_{i}} W^{T} \mu_{i}$ forms a set of orthonormal vectors.

Whitening

It then follows that:

$$
M \cdot(W, W, W)=\sum_{i=1}^{k} \frac{1}{\sqrt{w_{i}}} \bar{\mu}_{i}^{\otimes 3}
$$

Tensor Decomposition for LDA

In the LDA model, define the following:

$$
\begin{aligned}
M_{1}:= & \mathbb{E}\left[x_{1}\right] \\
M_{2}:= & \mathbb{E}\left[x_{1} \otimes x_{2}\right]-\frac{\alpha_{0}}{\alpha_{0}+1} M_{1} \otimes M_{1} \\
M_{3}:= & \mathbb{E}\left[x_{1} \otimes x_{2} \otimes x_{3}\right] \\
& -\frac{\alpha_{0}}{\alpha_{0}+2}\left(\mathbb{E}\left[x_{1} \otimes x_{2} \otimes M_{1}\right]+\cdots+\mathbb{E}\left[M_{1} \otimes x_{1} \otimes x_{2}\right]\right) \\
& +\frac{2 \alpha_{0}^{2}}{\left(\alpha_{0}+2\right)\left(\alpha_{0}+1\right)} M_{1}^{\otimes 3}
\end{aligned}
$$

Tensor Decomposition for LDA

Theorem (A2012)
Let M_{1}, M_{2}, M_{3} as above. Then:

$$
\begin{aligned}
& M_{2}=\sum_{i=1}^{k} \frac{\alpha_{i}}{\left(\alpha_{0}+1\right) \alpha_{0}} \mu_{i}^{\otimes 2} \\
& M_{3}=\sum_{i=1}^{k} \frac{2 \alpha_{i}}{\left(\alpha_{0}+2\right)\left(\alpha_{0}+1\right) \alpha_{0}} \mu_{i}^{\otimes 3}
\end{aligned}
$$

References

[A2012] Anandkumar, Anima, et al. "A spectral algorithm for latent dirichlet allocation." Advances in Neural Information Processing Systems. 2012.
[A2014] Anandkumar, Animashree, et al. "Tensor decompositions for learning latent variable models." The Journal of Machine Learning Research 15.1 (2014): 2773-2832.
[C2008] Comon, Pierre, et al. "Symmetric tensors and symmetric tensor rank." SIAM Journal on Matrix Analysis and Applications 30.3 (2008): 1254-1279.
[C2014] Comon, Pierre. "Tensors: a brief introduction." IEEE Signal Processing Magazine 31.3 (2014): 44-53.
[D1997] Del Corso, Gianna M. "Estimating an eigenvector by the power method with a random start." SIAM Journal on Matrix Analysis and Applications 18.4 (1997): 913-937.
[D2018] Draisma, Jan, Giorgio Ottaviani, and Alicia Tocino. "Best rank- k approximations for tensors: generalizing Eckart-Young." Research in the Mathematical Sciences 5.2 (2018): 27.
[H2013] Hillar, Christopher J., and Lek-Heng Lim. "Most tensor problems are NP-hard." Journal of the ACM (JACM) 60.6 (2013): 45.
[H2017] Hsu, Daniel. "Tensor Decompositions for Learning Latent Variable Models I \& II." YouTube, uploaded by Simons Institute, 27 January 2017, link-1 link-2
[L2012] Landsberg, J. M. Tensors: Geometry and Applications. American Mathematical Society, 2012.
[M1987] McCullagh, Peter. Tensor methods in statistics. Vol. 161. London: Chapman and Hall, 1987.
[M2016] Moitra, Ankur. "Tensor Decompositions and their Applications." YouTube, uploaded by Centre International de Rencontres Mathématiques, 16 February 2016, link
[O2014] Ottaviani, Giorgio. "Tensors: a geometric view." Simons Institute Open Lecture (2014). Video.
[O2015] Ottaviani, Giorgio, and Raffaella Paoletti. "A geometric perspective on the singular value decomposition." arXiv preprint arXiv:1503.07054 (2015).
[R2016] Robeva, Elina. "Orthogonal decomposition of symmetric tensors." SIAM Journal on Matrix Analysis and Applications 37.1 (2016): 86-102.
[S2017] Sidiropoulos, Nicholas D., et al. "Tensor decomposition for signal processing and machine learning." IEEE Transactions on Signal Processing 65.13 (2017): 3551-3582.
[V2014] Vannieuwenhoven, Nick, et al. "On generic nonexistence of the Schmidt-Eckart-Young decomposition for complex tensors." SIAM Journal on Matrix Analysis and Applications 35.3 (2014): 886-903.
[Z2001] Zhang, Tong, and Gene H. Golub. "Rank-one approximation to high order tensors." SIAM Journal on Matrix Analysis and Applications 23.2 (2001): 534-550.

[^0]: ${ }^{3}$ We drop parentheses and say that \otimes is associative because we can take canonical identifications between the different orders of tensor product operations (not order of the vector spaces themselves; it is not commutative).

[^1]: ${ }^{8} \mathrm{CP}$ stands either for Canonical Polyadic or Candecomp/Parafac.

[^2]: ${ }^{9}$ Theorem statement from [C2008].

[^3]: ${ }^{10}$ Lemma statement from [R2016].

[^4]: ${ }^{11}$ Definition statement from [R2016].

