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Parameter Estimation

Problem: Let θ parametrize our model for the world.

I How to determine model parameter θ using empirical data?
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Method of Moments

Let X be data we observe generated by model with θ.

1. f(X) is a function that measures something about the data.

2. From our data, we can form an empirical estimate:

Ê[f(X)].

3. Then, we solve an inverse problem—which θ satisfies:

Eθ[f(X)] = Ê[f(X)].

This yields some estimate θ of the model parameter.

3 / 113



Method of Moments

Let X be data we observe generated by model with θ.

1. f(X) is a function that measures something about the data.

2. From our data, we can form an empirical estimate:
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Concerns

1. Identifiability: is determining the true parameters θ possible?

2. Consistency: will our estimate θ̂ converge to the true θ?

3. Complexity: how many samples? how much time? (for ε, δ)

4. Bias: how off is the model’s best?
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Tensor Decompositions in Parameter Estimation

High level:
I Construct f(X) a tensor-valued function.

I Tensors have ‘rigid’ structure, so identifiability becomes easier.

I There are efficient algorithms to decompose tensors.
I This allows us to retrieve model parameters.
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Motivating Example I: Factor Analysis

Setup: There are n tests, k personality traits, and m students.

I each student has a linear combination of those traits

I each test is a linear function of those traits

A

(n×m)

= B

(n×k)

C

(k×m)
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Motivating Example I: Factor Analysis

Problem: Given A only, can we deduce k, B, and C?1

I that is, is there a unique factorization:

A =
k∑
i=1

BiC
T
i

1This problem is originally due to Spearman, described in [M2016].
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Motivating Example I: Factor Analysis

Rotation Problem: if B and C are solutions, and R ∈ GL(k,R):

A

(n×m)

=

 B

(n×k)

R−1

(k×k)




R

(k×k)

C

(k×m)


then so are BR−1 and RC.

I thus B and C are not unique (and so not identifiable)
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Motivating Example II: Topic Modeling

Setup: t topics, vocabulary size d, and 3-word long documents.

I topic h is chosen with probability wh
I words xi’s are conditionally independent on topic h, according

to probability distribution P h ∈ ∆d−1

h

x2x1 x3
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Motivating Example II: Topic Modeling

Notation: define the 3-way array M to be:

M =

x2

x1

x3

Mijk = P[x1 = i, x2 = j, x3 = k] =

t∑
h=1

whP
h
i P

h
j P

h
k
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Motivating Example II: Topic Modeling

Problem: given M , can we deduce t, wh’s and P h’s?2

2This problem is presented in [H2017].
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Motivating Examples: Comparison

Problem I

Ars =

k∑
i=1

BriCis

I [Ars] is an n×m matrix.

I Fixing i, [BriCis] is a n×m matrix with rank 1.
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Motivating Examples: Comparison

Problem II

Mijk =

t∑
h=1

whP
h
i P

h
j P

h
k

I [Mijk] is an d× d× d matrix.

I Fixing h, [whP
h
i P

h
j P

h
k ] is a d× d× d array of ‘rank’ 1.
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Outline

I Coordinate-free linear algebra

I Multilinear algebra and tensors

I SVD and low-rank approximations

I Tensor decompositions

I Latent variable models
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Coordinate-Free Linear Algebra

Figure 1: “Don’t use coordinates unless someone holds a
pickle to your head.” J. M. Landsberg [L2012]
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Dual Vector Space

Definition
Let V be a finite-dimensional vector space over R. The dual vector
space V ∗ is the space of all real-valued linear functions f : V → R.

I We call vectors in V ∗ dual vectors.
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Vector Space and its Dual

How should we make sense of V and V ∗?

I V is the space of objects or states
I the dimension of V is how many degrees of freedom/

ways for objects to be different

I V ∗ makes a real-valued measurement on an object/state
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Vector Space and its Dual

Example (Traits)

Let V be the space of personality traits of an individual.

I Perhaps, secretly, we know that there are k independent
traits, so V = span(e1, . . . , ek)

I We can design tests e1, . . . , ek that measure how much an
individual has those traits:

ei(ej) = δij .
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Vector Space and its Dual

Example (Traits, cont.)

Say Alice has personality trait v ∈ V . Then, her ith trait has
magnitude:

αi := ei(v),

which is a scalar in R.

I Since v =
∑
αiei, we can represent her personality in

coordinates with respect to the basis ei by a 1D array

[v] =

α
1

...
αk

 .
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Vector Space and its Dual

Example (Traits, cont.)

On the other hand, say we have a personality test f ∈ V ∗.

I The amount that f tests for the ith trait is:

βi := f(ei),

which is a scalar.

I It follows that the ei’s form a basis on V ∗, and f =
∑
βie

i.
We can represent f in coordinates:

[f ] =
[
β1 · · · βk

]
.
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Vector Space and its Dual

Example (Traits, cont.)

The score Alice gets on the test f is then:

f(v) =
[
β1 · · · βk

] α
1

...
αk

 =

k∑
i=1

αiβi.
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Vector Space and its Dual

Example (Traits, cont.)

Notice that we can define the operation C : V ∗ × V → R

C(f, v) = f(v),

which conceptually means to ‘take the measurement f on v’.
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Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally
substituted any (finite-dimensional) abstract vector space V by
some Rn.

I The price was coordinates, [v] =
∑
αiei.

I And real-valued linear map as 1× n matrix (more numbers).

23 / 113



Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally
substituted any (finite-dimensional) abstract vector space V by
some Rn.

I The price was coordinates, [v] =
∑
αiei.

I And real-valued linear map as 1× n matrix (more numbers).

23 / 113



Vector Space and its Dual: payoff, prelude

When we first learned linear algebra, we may have mentally
substituted any (finite-dimensional) abstract vector space V by
some Rn.

I The price was coordinates, [v] =
∑
αiei.

I And real-valued linear map as 1× n matrix (more numbers).

23 / 113



Vector Space and its Dual: payoff, prelude

However, if we begin to work with more complicated spaces and
maps, coordinates might reduce clarity.

I For now, just understand that V is a space of objects, while
V ∗ is a space of devices that make linear measurements.

I These are dual objects, and there is a natural way we can
apply two dual objects to each other.
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Linear Transformations

Example (Traits, cont.)

Let’s introduce a machine T : V → V that takes in a person and
purges them of all personality except for the first trait, e1.

I i.e. T projects v ∈ V onto e1.
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Linear Transformations

Example (Traits, cont.)

Thus, given v ∈ V the machine T :

1. measures the magnitude of trait e1 using e1 ∈ V ∗

2. outputs e1(v) attached to e1 ∈ V :

T (v) = e1 ⊗ e1(v)

where we informally use ⊗ to mean ‘attach’.

Naturally, we say that T = e1 ⊗ e1.
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Linear Transformation

Example (Traits, cont.)

The matrix representation of T = e1 ⊗ e1 is:

[T ] =


1 0 · · · 0
0 0
...

. . .

0 0

 .
The first row of [T ] determines what [Tv]1 is; indeed the first row
is the dual vector e1.
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Linear Transformations

More generally, let T : V → V be a linear transformation:

T : V → V = Re1 ⊕ · · · ⊕ Ren,

so we can decompose T into n maps, T i : V → Rei.

I But notice that Rei is isomorphic to R.

I So really, T i is a measurement in V ∗ (it produces a scalar),
but we’ve attached the output to the vector ei:

ei ⊗ T i

I Recomposing T , we get:

T =
n∑
i=1

ei ⊗ T i.
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Linear Transformations

Relying on how we usually use matrices,

Tv

(n×1)

= T

(n×n)

v

(n×1)

the ith row of [T ] gives the coordinate representation of the dual
vector T i ∈ V ∗ that we then attach to ei.
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Linear Transformations

Definition
Let V ⊗ V ∗ be the vector space of all linear maps T : V → V .

I Objects in V ⊗ V ∗ are linear combinations of v ⊗ f , where
v ∈ V and f ∈ V ∗.

I The action of (v ⊗ f) on a vector u ∈ V is:

(v ⊗ f)(u) = v ⊗ f(u) = f(u) · v.
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Other Views

Stepping back a bit, we have objects v ∈ V and dual objects
f ∈ V ∗. We stuck them together producing v ⊗ f . It is:

I a linear map V → V

I a linear map V ∗ → V ∗, with g 7→ g(v) · f
I a bilinear map V ∗ × V → R, with (g, u) 7→ g(v) · f(u)
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Wire Diagram
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Coordinate-Free Objects

Importantly, our definitions of V , V ∗ and V ⊗ V ∗ are
coordinate-free and do not depend on a basis. Thus, each have
‘physical reality’ outside of a basis:

I object

I measuring-device

I object-attached-to-measuring-device

33 / 113



Tensors

God created the matrix.
The Devil created the tensor.

—G. Ottaviani [O2014]
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Tensors: definitions

1. coordinate-free

2. coordinate

3. formal

4. multilinear
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The Matrix: physical picture

We can describe a matrix as this object in V ⊗ V ∗:
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Tensor Product: physical picture
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Contraction: physical picture
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Tensor Product: coordinate definition

The tensor product of Rn and Rm is the space

Rn ⊗ Rm = Rn×m.

If e1, . . . , en and f1, . . . , fm are their bases, then

ei ⊗ fj

form a basis on Rn ⊗ Rm.
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Tensor Product: coordinate definition

We think of an element of Rn ⊗ Rm as an array of size n×m.
Given any u ∈ Rn and v ∈ Rm, their tensor product is:

(u⊗ v)ij = uivj ,

coinciding with the usual outer product uvT .
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Tensor Product: formal definition

Definition
Let V and W be vector spaces. The tensor product V ⊗W is the
vector space generated over elements of the form v ⊗ w modulo
the equivalence:

(λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw)

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

where λ ∈ R and v, v1, v2 ∈ V and w,w1, w2 ∈W .
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Tensor Product: formal definition

A general element of V ⊗W is of the form (nonuniquely):

∑̀
i=1

λivi ⊗ wi,

where λi ∈ R and vi ∈ V and wi ∈W .
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Tensor Product: basis

Let v1, . . . , vn ∈ V and w1, . . . , wm ∈W be bases. Then, the
elements of the form

vi ⊗ wj
form a basis for V ⊗W , where 1 ≤ i ≤ n and 1 ≤ j ≤ m .
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Tensor Product: formal definition

Definition
If V1, . . . , Vn are vector spaces, then V1 ⊗ · · · ⊗ Vn is the vector
space generated by taking the iterated tensor product3

V1 ⊗ · · · ⊗ Vn := (((V1 ⊗ V2)⊗ V3)⊗ · · ·Vn).

I We say that a tensor in this tensor product space has order n.

3We drop parentheses and say that ⊗ is associative because we can take
canonical identifications between the different orders of tensor product
operations (not order of the vector spaces themselves; it is not commutative).
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Tensor Product: coordinate picture

We arrive back to the picture of the n-dimensional array of
coordinates. For example, here T ∈ U ⊗ V ⊗W is:

[T ] =

j

i

k

T =
∑
i,j,k

Tijkui ⊗ vj ⊗ wk.
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Multilinear Function

Definition
Let V1, . . . , Vn,W be vector spaces. A map A : V1× · · ·×Vn →W
is multilinear if it is linear in each argument.

I That is, for all vk ∈ Vk and for all i,

A(v1, . . . vi−1, · , vi+1, . . . , vn) : Vi →W

is a linear map.
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Multilinear Function

Exercise
If A : V1 × · · · × Vn → R is multilinear, is it linear? What is a basis
of V1 × · · · × Vn as a vector space?
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Multilinear Function

Example

Let f : R× R× R→ R be defined by f(x, y, z) = xyz.

Example

Let X : V × V ∗ → V ⊗ V ∗ be defined by X(v, f) = v ⊗ f .
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Multilinear Function: intuition

Let A : V1 × · · · × Vn → R be multilinear.

I Say V1 are the individual’s personality traits
...
Vn are drugs the individual has taken

I A(v1, . . . , vn) is how well the individual performs on a test,
given their characteristics (v1, . . . , vn).
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Multilinear Function: intuition

Multilinearity implies:

A(v1, . . . , 2vn) = 2A(v1, . . . , vn),

meaning that if Alice are on twice as many drugs, she perform
twice as well/poorly.
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Multilinear Function: intuition

On the other hand, if A is merely linear:

A(v1, . . . , 2vn) = A(v1, . . . , vn) +A(0, . . . , vn).

Here, each coordinate v1, . . . , vn is independent from each other.
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Multilinear Function: intuition

Conceptually, a multilinear function entangles each of the
coordinates together.

I The linear function treats each coordinate independently.
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Tensor Product: multilinear

Let V1, . . . , Vn be vector spaces. The tensor product attaches the
objects (v1, . . . , vn) together into the single:

v1 ⊗ · · · ⊗ vn ∈ V1 ⊗ · · · ⊗ Vn

in such a way that any multilinear map A : V1 × · · ·Vn →W
becomes linear A : V1 ⊗ · · · ⊗ Vn →W .
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Tensor Space as Vector Space
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Contraction
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Tensor Product: currying
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Notation

Let V ⊗d denote the tensor space V ⊗ d times· · · ⊗ V .

I Let v⊗d = v ⊗ d times· · · ⊗ v for v ∈ V .
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Decomposable/Pure Tensor

Definition
A tensor T ∈ V1 ⊗ · · · ⊗ Vn is decomposable or pure if there are
vectors v1 ∈ V1, . . . , vn ∈ Vn such that:

T = v1 ⊗ · · · ⊗ vn.
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Decomposable Matrix

Let M ∈ V ⊗ V ∗ is decomposable, so M = v ⊗ f .

Exercise
Describe the action of M : V → V . What is its rank? What would
its singular value decomposition look like?

I Physically, it is a ‘machine’ that is sensitive to one direction,
and spits out a vector also only in one direction.

I What if M =
∑

i vi ⊗ f i?
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Rank

Definition
The rank of a tensor T ∈ V1 ⊗ · · · ⊗ Vn is the minimum number r
such that T is a sum of r decomposable tensors:

T =

r∑
i=1

Ti

=

r∑
i=1

v
(i)
1 ⊗ · · · ⊗ v

(i)
n .
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Rank of Matrix

The tensor rank coincides with the matrix rank. However, intuition
from matrices don’t carry over to tensors.

I row rank = column rank is generally false for tensors

I rank ≤ minimum dimension is also false

In fact, computing the rank of a tensor is NP-hard.
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Computational Complexity

Figure 2: “Most tensor problems are NP-hard”, Hillar & Lim, [H2013]
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Why do we care about rank?

We’ll take a hint from singular value decomposition (SVD) for
matrices.

I Since we want to begin talking about SVD, we need a notion
of inner product on our space.
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Choice of Basis

Remark
If V is a finite-dimensional vector space, then a choice of basis
e1, . . . , ek ∈ V induces a dual basis e1, . . . , ek ∈ V ∗ and an inner
product/norm on V and V ∗:

〈u, v〉V := [u]T [v] 〈f, g〉V ∗ := [f ][g]T ,

where [u]T [v] and [f ][g]T , we mean the standard dot product on
coordinates.
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Choice of Basis

In short, a choice of basis is (essentially) equivalent to a choice of
inner product. In the following, we can identify V , V ∗, and Rn.
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Singular Value Decomposition

Theorem (SVD, coordinate)

Any real m× n matrix has the SVD

A = UΣV T ,

where U and V T are orthogonal, and Σ = Diag(σ1, σ2, . . . ), with
σ1 ≥ σ2 ≥ · · · 0.4

4Theorem statement from [O2015].
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Singular Value Decomposition: physical version

For simplicity, we’ll state the version for A ∈ V ⊗ V ∗, where
adjoints are implicit due to the identification of V with V ∗ (from
the choice of basis).

Theorem (SVD, coordinate-free)

Let A ∈ V ⊗ V ∗. Then there is a decomposition (SVD)

A =

k∑
i=1

σi(vi ⊗ f i),

where σ1 ≥ · · · ≥ σk > 0 such that the vi’s are unit vectors and
pairwise orthogonal, and similarly for the f i’s.
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Singular Value Decomposition: physical picture
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Singular Value Decomposition: geometric version

Theorem (SVD, geometric)

Let A ∈ Rm×n, and let UΣV t be its SVD, where
Σ = Σ1 + · · ·+ Σk (again, we assume σ1 ≥ · · · ≥ σk). Then,
UΣ1V

T is the best rank-1 approximation of A:∥∥A− UΣ1V
T
∥∥
F
≤ ‖A−X‖F

for all matrices X of rank 1.5

5Theorem statement from [O2015].
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Singular Value Decomposition: geometric version

In fact, we can iteratively generate UΣi+1V
T by finding the best

rank-1 approximation of A after being deflated of its first i singular
values:

A−
(
UΣ1V

T + · · ·+ UΣiV
T
)
.
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Singular Value Decomposition: geometric picture
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Singular Value Decomposition: geometric version

Question: How do you determine whether the rank of a matrix is
less than k?

I Determinants of k × k minors.

I The determinant is a polynomial equation over the ei ⊗ f j ’s.

I The subset of m× n matrices:

Mk = {m× n matrices of rank ≤ k}

is the zero set of some set of polynomial equations.
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Singular Value Decomposition: geometric version

Note that the Mk’s contain each other:

0 =M0 ⊂M1 ⊂ · · · ⊂ Mmin{m,n} = Rm×n.
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Singular Value Decomposition: geometric version

Let A = UΣV T be the SVD and 1 ≤ r ≤ rank(A).

Theorem (Eckart-Young)

All critical points of the distance function from A to the (smooth)
variety Mr \Mr−1 are given by:

U
(
Σi1 + · · ·+ Σir

)
V T ,

where 1 ≤ ip ≤ rank(A). If the nonzero singular values of A are

distinct, then the number of critical points is
(
rank(A)

r

)
.6

6Theorem statement from [O2015].
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Singular Value Decomposition: tensor notation

Notice that SVD states that any matrix A ∈ Rm×n may be
decomposed into:

A = Σ · (U, V ),

where Σ ∈ Rm×n is diagonal, and U ∈ Rm×m and V ∈ Rn×n are
unitary. (Keep the physical picture in mind!)
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SVD for Tensors?

Let A ∈ Rn1×···×np be an order-p tensor. The Tucker
decomposition of A is:

A = Σ · (U1, · · · , Up),

where Σ is diagonal, and the Ui’s are orthonormal.
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Extension to Tensors

Unfortunately, the best rank-k approximation problem is ill-posed:

I The set of rank k tensors Mk may not be a closed set, so
minimizer might not exist.7

I The best rank-1 tensor may have nothing to do with the best
rank-k tensor

I Deflating by the best rank-1 tensor may increase the rank

7For example, see [V2014].
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Border Rank

Definition
The border rank R(T ) of a tensor T is the minimum r such that T
is the limit of tensors of rank r. If R(T ) 6= R(T ), we say that T is
an open boundary tensor (OBT).
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Tensor Decompositions

While no direct analog of SVD theorem is possible on tensors,
there are a few generalizations. We can relax Tucker’s criteria:

I Higher-order SVD: Σ no longer has to be diagonal

I CP decomposition: U, V,W no longer need to be
orthonormal8

8CP stands either for Canonical Polyadic or Candecomp/Parafac.
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What about Spectral Theorem for Symmetric Tensors?

Problem: Which tensors in V ⊗d have a ‘eigendecomposition’:

λ1v
⊗d
1 + · · ·+ λkv

⊗d
k ,

where the vi’s form an orthonormal basis?
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Action by Symmetric Group

Definition
Let Sd denote the group of permutations on d elements. If σ ∈ S,
it acts on elements of V ⊗d by:

σ(v1 ⊗ · · · ⊗ vd) 7→ vσ(1) ⊗ · · · ⊗ vσ(d).
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Symmetric Tensors

Definition
The subspace SdV of symmetric tensors in V ⊗d is the collection of
tensors invariant to permutations σ ∈ S:

SdV := {T ∈ V ⊗d : σ(T ) = T}.
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Odeco Tensor

Definition
A symmetric tensor T ∈ SdV is orthogonally decomposable
(odeco) if it can be written as:

T =

k∑
i=1

λiv
⊗d
i ,

where the vi ∈ V form an orthonormal basis of V .
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Odeco Tensors: d = 2

If d = 2, then SdV are just the symmetric matrices:

I the spectral theorem says that all of SdV are odeco.
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Odeco Tensors: d > 2

Theorem (Alexander-Hirschowitz)

For d > 2, the generic symmetric rank RS of a tensor in SdCn is
equal to:

RS =

⌈
1

n

(
n+ d− 1

d

)⌉
,

except when (d, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, where it should
be increased by 1.9

I Note that the rank of a tensor over C lower bounds the rank
of a tensor over R.

9Theorem statement from [C2008].
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Odeco Tensors: d > 2

Rank of odeco tensor is n =⇒ not all of SdV are odeco. In fact...
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Odeco Tensors: d > 2

Lemma
The dimension of the odeco variety in SdCn is

(
n+1
2

)
.10

I In contrast, the dimension of SdCn is
(
n+d−1

d

)
.

10Lemma statement from [R2016].
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Symmetric Decomposition: computational complexity

Generally, finding a symmetric decomposition of a symmetric
tensor is NP-hard, it is computationally efficient for odeco tensors.

I We’ll now show the tensor power method.
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Eigenvectors of Symmetric Tensors

Definition
Let T ∈ SdV . A unit vector v ∈ V is an eigenvector of T with
eigenvalue λ ∈ R if:

T · v⊗d−1 = λv.
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Eigenvectors of Symmetric Tensors

Example

Let T = e⊗d1 . Its eigenvectors are those v ∈ V such that:

T · v⊗d−1 : = (e1 ⊗
d times· · · ⊗ e1) · (v ⊗

d−1 times· · · ⊗ v)

= (e1 · v)d−1 ⊗ e1
= e1(v)d−1e1 = λv.

Thus, the only eigenvector of T is e1.
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Eigenvectors of Symmetric Tensors

Note that by definition, an eigenvector v must be of unit length.

Exercise
Equivalently, we could remove that restriction, and say that two
eigenpairs (λ, v) and (λ′, v′) are equivalent if there exists some
t 6= 0 such that:

v = tv′ λ = td−2λ′.

Explain why.
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Eigenvectors of Symmetric Tensors: d = 2

Remark
When d = 2, then SdRn are just the symmetric matrices.
Convince yourself that the definition of eigenvectors here coincide
with the usual one.
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Robust Eigenvectors

Definition
Let T ∈ SdV . A unit vector v ∈ V is a robust eigenvector of T if
there is a closed ball B of radius ε > 0 centered at v such that for
all u0 ∈ B, the repeated iteration of the map:

φ := u 7→ T · u⊗d−1

‖T · u⊗d−1‖

converges to v.11

I i.e. robust eigenvectors are attracting fixed points of φ.

11Definition statement from [R2016].
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Convergence to Robust Eigenvectors

Theorem
Suppose T ∈ S3Rn is odeco,12

T =

k∑
i=1

λiv
⊗3
i .

1. The set of u ∈ Rn that do not converge to some vi under
repeated iteration of φ has measure zero.

2. The set of robust eigenvectors of T is equal to {v1, . . . , vk}.

12Theorem statement from [A2014].
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Uniqueness of Decomposition

Corollary

If T ∈ S3Rn is odeco, its decomposition is unique.
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Comparison to S2Rn

Exercise
Let M ∈ S2Rn be a symmetric matrix, with eigenvalues

λ1 > · · · > λn > 0.

What is the set of robust eigenvectors of M?
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Tensor Power Method

Algorithm 1 Tensor Power Method

input T ∈ SdRn an odeco tensor, d > 2
1: Set E ← {} the collection of eigenpairs
2: repeat
3: Choose random u ∈ Rn
4: Iterate u← φ(u) until convergence
5: Compute λ using Tud−1 = λu
6: T ← T − λu⊗d
7: E ← E ∪ {(λ, u)}.
8: until T = 0
9: return E
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Tensor Power Method: Analysis

Lemma (Convergence to eigenvector)

Let T as before. Suppose that u ∈ Rn satisfies

|λ1〈v1, u〉|  |λ2〈v2, u〉| ≥ · · · .

Denote by φ(t)(u) the output of t repeated iterations of φ on u.
Then, ∥∥∥v1 − φ(t)(u)

∥∥∥2 ≤ O(∣∣∣∣λ2〈v2, u〉λ1〈v2, u〉

∣∣∣∣2t
)
.

That is, u converges to v1 at a quadratic rate.13

13Lemma 5.1, [A2014].
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Matrix Power Method

Remark
In contrast, for symmetric positive definite matrices, the rate of
convergence is at upper bounded linearly in λ1/λ2.14

I Prove as exercise. Why is the convergence for T ∈ S3Rn
quadratic?

14See also, [D1999]
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Perturbation of Odeco Tensor

In estimating an odeco tensor T , we might produce a tensor T̂
that is not odeco.

I [A2014] designed an algorithm to iteratively estimate the
robust eigenvectors of T .
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Robust Tensor Power Method

Algorithm 2 Robust Tensor Power Method (RTPM)

input tensor T̂ ∈ S3Rk, iterations L and N
1: for τ = 1 to L do
2: Draw uτ uniformly at random from unit sphere Sk−1

3: Set uτ ← φ(N)(uτ ).
4: end for
5: Let u∗τ be the maximizer of T̂ · u⊗3τ
6: û← φN (u∗τ ), λ̂← T̂ · û⊗3.
7: return (û, λ̂) and deflated tensor T̂ − λ̂û⊗3.
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Analysis of Algorithm

In the following:

I T̂ = T + E ∈ S3Rk symmetric; T =
∑k

i=1 λiv
⊗3
i odeco

I λmin and λmax the min/max λi’s

I ‖E‖op ≤ ε

Theorem (Thm. 5.1, [A2014])

Let δ ∈ (0, 1). If ε = O(λmin
k ), N = Ω(log k + log log(λmax

ε ), and

L = poly(k) log(1δ ), running RTPMk will yield, w.p. 1− δ,

‖vi − v̂i‖ = O

(
ε

λi

) ∣∣∣λi − λ̂i∣∣∣ = O(ε)

∥∥∥∥∥∥T −
k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥∥∥ ≤ O(ε).

102 / 113



Return to Topic Modeling

Setup: t topics, vocabulary size d, and 3-word long documents.

I topic h is chosen with probability wh
I words xi’s are conditionally independent on topic h, according

to probability distribution P h ∈ ∆d−1

h

x2x1 x3
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Using Tensors

From the d possible words, e1, . . . , ed, generate the vector space of
all ‘words objects’:

V = Re1 ⊕ · · · ⊕ Red = Rd.

We interpret x ∈ V as a probability vector, where the weight on
the ith coordinate is the probability the word is ei.
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Using Tensors

Now, we want to create the space of all possible three-word
documents: V ⊗3.

I Since we assume that the choice of 3 words in a single
document is conditionally independent, this means that
expectation is multilinear.

I In particular, let x1, x2, x3 be the random variable for the
words in a document:

E[x1 ⊗ x2|h = j] = E[x1|h = j]⊗ E[x2|h = j]

= µj ⊗ µj .
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Using Tensors

Theorem (A2012)

If M2 := E[x1 ⊗ x2] and M2 := E[x1 ⊗ x2 ⊗ x3], then:

M2 =

k∑
i=1

wiµ
⊗2
i

M3 =
k∑
i=1

wiµ
⊗3
i
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Whitening

We are almost at a point where we can use the Robust Tensor
Power Method to deduce the probabilities µi (i.e. the robust
eigenvectors) and the weights wi (i.e. the eigenvalues).

I But we need to make sure the µi’s are orthonormal.
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Whitening

We can take advantage of M2, which is just an invertible matrix,
conditioned upon:

I the vectors µ1, . . . , µk ∈ Rd are linearly independent,

I the scalars w1, . . . , wk > 0 are strictly positive.

108 / 113



Whitening

If the condition is satisfied, then there exists W such that:

M2 · (W,W ) = I,

so that setting µ̄i =
√
wiW

Tµi forms a set of orthonormal vectors.
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Whitening

It then follows that:

M · (W,W,W ) =

k∑
i=1

1
√
wi
µ̄⊗3i .
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Tensor Decomposition for LDA

In the LDA model, define the following:

M1 := E[x1]

M2 := E[x1 ⊗ x2]−
α0

α0 + 1
M1 ⊗M1

M3 := E[x1 ⊗ x2 ⊗ x3]

− α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] + · · ·+ E[M1 ⊗ x1 ⊗ x2])

+
2α2

0

(α0 + 2)(α0 + 1)
M⊗31
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Tensor Decomposition for LDA

Theorem (A2012)

Let M1,M2,M3 as above. Then:

M2 =

k∑
i=1

αi
(α0 + 1)α0

µ⊗2i

M3 =

k∑
i=1

2αi
(α0 + 2)(α0 + 1)α0

µ⊗3i
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