
Transformers are universal approximators
Yun, Bhojanapalli, Rawat, Reddi, Kumar ‘20

Geelon So
(agso@eng.ucsd.edu)

April 22, 2020

1 / 35

agso@eng.ucsd.edu

2 / 35

Introduction

3 / 35

Background: transformer networks

Transformer networks are a recent approach to learning
sequence-to-sequence functions,

f : Rd×n → Rd×n.

4 / 35

Background: interaction

The difficulty of learning seq-to-seq functions lies with the
interactions between the tokens in the sequence.

I If tokens don’t interact in the computation of f , then we’d
expect for some fi’s:

f(x1, . . . , xn) =
(
f1(x1), . . . , fn(xn)

)
.

5 / 35

Background: interaction

The difficulty of learning seq-to-seq functions lies with the
interactions between the tokens in the sequence.

I If tokens don’t interact in the computation of f , then we’d
expect for some fi’s:

f(x1, . . . , xn) =
(
f1(x1), . . . , fn(xn)

)
.

5 / 35

Background: interaction

Figure 1: An example from machine translation.

6 / 35

Background: sequential vs. parallel framework

I RNNs and LSTMs deal with interaction by keeping a
memory/summary of previous tokens. The underlying
framework is sequential.

I The analytic framework for transformers assume parallel
access to either all tokens (or at least all relevant tokens).

7 / 35

Background: sequential vs. parallel framework

I RNNs and LSTMs deal with interaction by keeping a
memory/summary of previous tokens. The underlying
framework is sequential.

I The analytic framework for transformers assume parallel
access to either all tokens (or at least all relevant tokens).

7 / 35

Paper summary

1. Transformer networks are universal approximators for
continuous seq-to-seq functions on compact domain.

2. Self-attention layers can compute contextual mappings of
input sequences.

8 / 35

Paper summary

1. Transformer networks are universal approximators for
continuous seq-to-seq functions on compact domain.

2. Self-attention layers can compute contextual mappings of
input sequences.

8 / 35

Review of transformer blocks

A transformer block is a seq-to-seq function Rd×n → Rd×n
composed of:

I an attention layer that exposes pairwise interaction

I a feedforward layer to perform computation

A transformer network is a composition of transformer blocks.

9 / 35

Review of transformer blocks

A transformer block is a seq-to-seq function Rd×n → Rd×n
composed of:

I an attention layer that exposes pairwise interaction

I a feedforward layer to perform computation

A transformer network is a composition of transformer blocks.

9 / 35

Review of transformer blocks

10 / 35

Review of transformer blocks: attention layer

11 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1W
`
OW

`
VX · σ

[
(W`

KX)T(W`
QX)

]
Where W`

K ,W
`
Q ∈ Rm×d, W`

O ∈ Rd×m and W`
V ∈ Rm×d.

12 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1W
`
OW

`
VX · σ

[
(W`

KX)T(W`
QX)

]
Where W`

K ,W
`
Q ∈ Rm×d, W`

O ∈ Rd×m and W`
V ∈ Rm×d.

12 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1W
`
OW

`
VX · σ

[
L`(X ⊗X)

]
Where L` is linear, W`

O ∈ Rd×m and W`
V ∈ Rm×d.

12 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1 W`
OW

`
V X · σ

[
L`(X ⊗X)

]
Where L` is linear, W`

O ∈ Rd×m and W`
V ∈ Rm×d.

12 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1 T
`
(
X · σ

[
L`(X ⊗X)

])
Where L` is linear, T ` is linear and at most rank-m.

12 / 35

Review of transformer blocks: attention layer

Let X ∈ Rd×n. Let σ be a column-wise softmax. Define:

Attn(X) = X +
∑h

`=1 T
`
(
X · σ

[
L`(X ⊗X)

])
Where L` is linear, T ` is linear and at most rank-m.

12 / 35

Review of transformer blocks: feedforward layer

Notice that the feedforward layer is just a single layer ReLu neural
network applied componentwise; thus, it uses shared weights:

FF(X) = X + W2 · ReLu
(
W1 ·X + b1 1

T
n

)
+ b2 1

T
n

for all tokens Xi.

13 / 35

Review of transformer blocks: skip connections

Because of the skip connections in both the attention and
feedforward layers, each block can turn on/off either layer:

Attn(X) = X +

h∑
`=1

W`
OW

`
VX · σ

[
(W`

KX)T(W`
QX)

]
FF(X) = X + W2 · ReLu(W1 ·X + b11

T
n) + b21

T
n ,

by setting W`
O or

[
W2 b2

]
to zero.

14 / 35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into X̃, so that X is encoded into each X̃i.

I We’ll call this a contextual mapping as X̃i captures not just
Xi but its context X.

3. Apply usual universal approximation of feedforward neural
nets to get approximation result.

15 / 35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into X̃, so that X is encoded into each X̃i.

I We’ll call this a contextual mapping as X̃i captures not just
Xi but its context X.

3. Apply usual universal approximation of feedforward neural
nets to get approximation result.

15 / 35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into X̃, so that X is encoded into each X̃i.

I We’ll call this a contextual mapping as X̃i captures not just
Xi but its context X.

3. Apply usual universal approximation of feedforward neural
nets to get approximation result.

15 / 35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into X̃, so that X is encoded into each X̃i.

I We’ll call this a contextual mapping as X̃i captures not just
Xi but its context X.

3. Apply usual universal approximation of feedforward neural
nets to get approximation result.

15 / 35

Caveat: permutation equivariance

Definition
A map f : Rd×n → Rd×n is permutation equivariant if for all
permutations P ∈ Σn and input X ∈ Rd×n,

f(XP) = f(X)P.

16 / 35

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

Proof.
The proof is direct. Let P be a permutation matrix. Then:

Attn(XP) = XP +
h∑
`=1

W`
O,VXP · σ

[
(W`

KXP)T(W`
QXP)

]
= XP +

h∑
`=1

W`
O,VXPP

T · σ
[
(W`

KX)T(W`
QX)

]
P

= Attn(X)P,

since PPT = I. Proof similar for FF(XP) = FF(X)P .

17 / 35

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

Proof.
The proof is direct. Let P be a permutation matrix. Then:

Attn(XP) = XP +

h∑
`=1

W`
O,VXP · σ

[
(W`

KXP)T(W`
QXP)

]
= XP +

h∑
`=1

W`
O,VXPP

T · σ
[
(W`

KX)T(W`
QX)

]
P

= Attn(X)P,

since PPT = I. Proof similar for FF(XP) = FF(X)P .

17 / 35

Main result

18 / 35

Universal approximation theorem

Theorem
Let f : Rd×n → Rd×n be a continuous and permutation
equivariant function with compact support.

Then, for all
1 ≤ p <∞ and ε > 0, there is a transformer network g such that:

dp(f, g) :=

(∫
‖f(X)− g(X)‖pp dX

)1/p

< ε.

19 / 35

Universal approximation theorem

Theorem
Let f : Rd×n → Rd×n be a continuous and permutation
equivariant function with compact support. Then, for all
1 ≤ p <∞ and ε > 0, there is a transformer network g such that:

dp(f, g) :=

(∫
‖f(X)− g(X)‖pp dX

)1/p

< ε.

19 / 35

Generalized transformers

We will consider generalized transformers where:

I We may replace the softmax σ by a hardmax σH .

I We may replace ReLu with any φ ∈ Φ, where Φ consists of
3-piecewise linear function with at least one constant piece.

20 / 35

Generalized transformers

We will consider generalized transformers where:

I We may replace the softmax σ by a hardmax σH .

I We may replace ReLu with any φ ∈ Φ, where Φ consists of
3-piecewise linear function with at least one constant piece.

20 / 35

Generalized transformers

We will consider generalized transformers where:

I We may replace the softmax σ by a hardmax σH .

I We may replace ReLu with any φ ∈ Φ, where Φ consists of
3-piecewise linear function with at least one constant piece.

20 / 35

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized
transformers (with respect to the metric dp).

Proof sketch.

I σ(λA)→ σH(A) as λ→∞.

I Any φ ∈ Φ can be arbitrarily approximated by four ReLu’s.

21 / 35

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized
transformers (with respect to the metric dp).

Proof sketch.

I σ(λA)→ σH(A) as λ→∞.

I Any φ ∈ Φ can be arbitrarily approximated by four ReLu’s.

21 / 35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]d×n.

2. Quantize [0, 1]d to a grid Gδ := {0, δ, . . . , 1− δ}d×n.

3. Prove transformers can quantize the cube, [0, 1]d×n → Gδ.

4. Prove approximation result for functions Gδ → Rd×n.

22 / 35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]d×n.

2. Quantize [0, 1]d to a grid Gδ := {0, δ, . . . , 1− δ}d×n.

3. Prove transformers can quantize the cube, [0, 1]d×n → Gδ.

4. Prove approximation result for functions Gδ → Rd×n.

22 / 35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]d×n.

2. Quantize [0, 1]d to a grid Gδ := {0, δ, . . . , 1− δ}d×n.

3. Prove transformers can quantize the cube, [0, 1]d×n → Gδ.

4. Prove approximation result for functions Gδ → Rd×n.

22 / 35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]d×n.

2. Quantize [0, 1]d to a grid Gδ := {0, δ, . . . , 1− δ}d×n.

3. Prove transformers can quantize the cube, [0, 1]d×n → Gδ.

4. Prove approximation result for functions Gδ → Rd×n.

22 / 35

Quantization

Figure 2: An input X = (X1, . . . ,Xn) ∈ Rd×n

23 / 35

Quantization

Figure 2: An input X = (X1, . . . ,Xn) ∈ Rd×n

23 / 35

Quantization

Define the scalar quantization map gs.q. as:

gs.q.(x) =

{
bx/δc · δ x ∈ [0, 1)

−δnd o.w.

The map gs.q. rounds x ∈ [0, 1) down to the nearest grid point.

24 / 35

Quantization

Define the scalar quantization map gs.q. as:

gs.q.(x) =

{
bx/δc · δ x ∈ [0, 1)

−δnd o.w.

The map gs.q. rounds x ∈ [0, 1) down to the nearest grid point.

24 / 35

Feedforward layers can quantize the cube

Lemma
The map qs.q. can be implemented using

(
1
δ + 1

)
feedforward layers

with activation φ ∈ Φ and each hidden layer dimension equal to 1.

Proof sketch.

More generally, [0, 1]d can be quantized using d
(
1
δ + 1

)
layers.

25 / 35

Feedforward layers can quantize the cube

Lemma
The map qs.q. can be implemented using

(
1
δ + 1

)
feedforward layers

with activation φ ∈ Φ and each hidden layer dimension equal to 1.

Proof sketch.

More generally, [0, 1]d can be quantized using d
(
1
δ + 1

)
layers.

25 / 35

Contextual mapping

Definition
Let L ⊂ Rd×n be a finite set. Let L,L′ ∈ L. A contextual
mapping is a map q : L→ R1×n such that

I If two columns are distinct Li 6= Lj , then q(L)i 6= q(L)j .

I If L and L′ are not permutations, then for 1 ≤ i, i′ ≤ n:

q(L)i 6= q(L′)i′ .

In other words, if q(L)i is an encoding of Li, then from q(L)i, we
can recover not only Li but also its context L.

26 / 35

Contextual mapping

Definition
Let L ⊂ Rd×n be a finite set. Let L,L′ ∈ L. A contextual
mapping is a map q : L→ R1×n such that

I If two columns are distinct Li 6= Lj , then q(L)i 6= q(L)j .

I If L and L′ are not permutations, then for 1 ≤ i, i′ ≤ n:

q(L)i 6= q(L′)i′ .

In other words, if q(L)i is an encoding of Li, then from q(L)i, we
can recover not only Li but also its context L.

26 / 35

Contextual mapping

Definition
Let L ⊂ Rd×n be a finite set. Let L,L′ ∈ L. A contextual
mapping is a map q : L→ R1×n such that

I If two columns are distinct Li 6= Lj , then q(L)i 6= q(L)j .

I If L and L′ are not permutations, then for 1 ≤ i, i′ ≤ n:

q(L)i 6= q(L′)i′ .

In other words, if q(L)i is an encoding of Li, then from q(L)i, we
can recover not only Li but also its context L.

26 / 35

Contextual mapping

Definition
Let L ⊂ Rd×n be a finite set. Let L,L′ ∈ L. A contextual
mapping is a map q : L→ R1×n such that

I If two columns are distinct Li 6= Lj , then q(L)i 6= q(L)j .

I If L and L′ are not permutations, then for 1 ≤ i, i′ ≤ n:

q(L)i 6= q(L′)i′ .

In other words, if q(L)i is an encoding of Li, then from q(L)i, we
can recover not only Li but also its context L.

26 / 35

Contextual mapping

Figure 3: A contextual mapping q : Gδ → R1×n.

27 / 35

Simplification of Gδ

Define G̃δ ⊂ Gδ by:

G̃δ := {L ∈ Gδ : L has distinct columns}.

I Notice that
∣∣∣Gδ − G̃δ

∣∣∣ = O
(
δd|Gδ|

)
, so G̃δ contain

essentially all of Gδ.

28 / 35

Simplification of Gδ

Define G̃δ ⊂ Gδ by:

G̃δ := {L ∈ Gδ : L has distinct columns}.

I Notice that
∣∣∣Gδ − G̃δ

∣∣∣ = O
(
δd|Gδ|

)
, so G̃δ contain

essentially all of Gδ.

28 / 35

Self-attention layers can express contextual mappings

Lemma
There exists a map gcon : Rd×n → Rd×n composed of 1

δd
+ 1

self-attention layers, vector u ∈ Rd and q(L) := u>gcon(L) where:

1. q is a contextual mapping of G̃δ

2. There exists 0 < a < b such that:

a. if L ∈ G̃δ, then q(L) ∈ [a, b]1×n

b. if L ∈ {−δnd, 0, δ, . . . , 1− δ}d×n − G̃δ, then q(L) /∈ [a, b]1×n.

29 / 35

Feedforward layers can interpolate

Lemma
Let f : G̃δ → Rd×n be any permutation equivariant function.
Given gcon as above, there exists gout : Rd×n → Rd×n a
composition of feedforward layers such that:

gout ◦ gcon(L) =

{
f(L) L ∈ G̃δ

0 L ∈ {−δnd, 0, δ, . . . , 1− δ}d×n − G̃δ.

30 / 35

Proof: feedforward layers can interpolate

Proof sketch.
A neural network can interpolate on O

(
nδ−dn/n!

)
points of R.

We need at most O(nδ−dn/n!) layers with hidden dimension 1.

31 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.

I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use 1

δ + 1 attention layers to construct a

contextual mapping of G̃δ. Assume 1
δ = N ∈ N.

I WLOG, G̃δ 3 L = 1
N (k1, . . . , kn) where ki ∈ N.

I Attention can compute r = maxi,j ki − kj and add Nr to any
coordinate i such that ki = k.

I Sequentially apply transform, for k = 0, . . . , N − 1.

I If O is the output, then ki/N = Oi mod 1.
I All ki’s can be recovered from maxj Oj .

I Attention can compute s = maxj Oj and add Nn+1s to each
coordinate. Thus, all ki’s are encoded into Oj +Nn+1s.

32 / 35

Proof: self-attention can express contextual mappings

33 / 35

A summary in pictures

34 / 35

A summary in pictures

34 / 35

A summary in pictures

34 / 35

A summary in pictures

34 / 35

Position encoding

If we can preprocess X ∈ [0, 1]d×n via position encoding:

X 7→ X + 1 · (0, . . . , n− 1),

then the universal approximation theorem extends to general
sequence-to-sequence functions.

35 / 35

	Introduction
	Main result

