Transformers are universal approximators Yun, Bhojanapalli, Rawat, Reddi, Kumar '20

Geelon So
(agso@eng.ucsd.edu)

April 22, 2020

Computer Science > Machine Learning

[Submitted on 20 Dec 2019 (V1), last revised 25 Feb 2020 (this version, v2)]

Are Transformers universal approximators of sequence-to-sequence functions?

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar

Despite the widespread adoption of Transformer models for NLP tasks, the expressive power of these models is not well-understood. In this paper, we establish that Transformer models are universal approximators of continuous permutation equivariant sequence-to-sequence functions with compact support, which is quite surprising given the amount of shared parameters in these models. Furthermore, using positional encodings, we circumvent the restriction of permutation equivariance, and show that Transformer models can universally approximate arbitrary continuous sequence-to-sequence functions on a compact domain. Interestingly, our proof techniques clearly highlight the different roles of the self-attention and the feed-forward layers in Transformers In particular, we prove that fixed width self-attention layers can compute contextual mappings of the input sequences, playing a key role in the universal approximation property of Transformers Based on this insight from our analysis, we consider other simpler altematives to self-attention layers and empirically evaluate them.

Introduction

Background: transformer networks

Transformer networks are a recent approach to learning sequence-to-sequence functions,

$$
f: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}
$$

Background: interaction

The difficulty of learning seq-to-seq functions lies with the interactions between the tokens in the sequence.

Background: interaction

The difficulty of learning seq-to-seq functions lies with the interactions between the tokens in the sequence.

- If tokens don't interact in the computation of f, then we'd expect for some f_{i} 's:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)
$$

Background: interaction

$$
\text { THE } \rightarrow E L
$$

Figure 1: An example from machine translation.

Background: sequential vs. parallel framework

- RNNs and LSTMs deal with interaction by keeping a memory/summary of previous tokens. The underlying framework is sequential.

Background: sequential vs. parallel framework

- RNNs and LSTMs deal with interaction by keeping a memory/summary of previous tokens. The underlying framework is sequential.
- The analytic framework for transformers assume parallel access to either all tokens (or at least all relevant tokens).

Paper summary

1. Transformer networks are universal approximators for continuous seq-to-seq functions on compact domain.

Paper summary

1. Transformer networks are universal approximators for continuous seq-to-seq functions on compact domain.
2. Self-attention layers can compute contextual mappings of input sequences.

Review of transformer blocks

A transformer block is a seq-to-seq function $\mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ composed of:

- an attention layer that exposes pairwise interaction
- a feedforward layer to perform computation

Review of transformer blocks

A transformer block is a seq-to-seq function $\mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ composed of:

- an attention layer that exposes pairwise interaction
- a feedforward layer to perform computation

A transformer network is a composition of transformer blocks.

Review of transformer blocks

Review of transformer blocks: attention layer

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} \mathbf{W}_{O}^{\ell} \mathbf{W}_{V}^{\ell} \mathbf{X} \cdot \sigma\left[\left(\mathbf{W}_{K}^{\ell} \mathbf{X}\right)^{\top}\left(\mathbf{W}_{Q}^{\ell} \mathbf{X}\right)\right]
$$

Where $\mathbf{W}_{K}^{\ell}, \mathbf{W}_{Q}^{\ell} \in \mathbb{R}^{m \times d}, \mathbf{W}_{O}^{\ell} \in \mathbb{R}^{d \times m}$ and $\mathbf{W}_{V}^{\ell} \in \mathbb{R}^{m \times d}$.

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} \mathbf{W}_{O}^{\ell} \mathbf{W}_{V}^{\ell} \mathbf{X} \cdot \sigma\left[\left(\mathbf{W}_{K}^{\ell} \mathbf{X}\right)^{\top}\left(\mathbf{W}_{Q}^{\ell} \mathbf{X}\right)\right]
$$

Where $\mathbf{W}_{K}^{\ell}, \mathbf{W}_{Q}^{\ell} \in \mathbb{R}^{m \times d}, \mathbf{W}_{O}^{\ell} \in \mathbb{R}^{d \times m}$ and $\mathbf{W}_{V}^{\ell} \in \mathbb{R}^{m \times d}$.

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} \mathbf{W}_{O}^{\ell} \mathbf{W}_{V}^{\ell} \mathbf{X} \cdot \sigma\left[L^{\ell}(X \otimes X)\right]
$$

Where L^{ℓ} is linear, $\mathbf{W}_{O}^{\ell} \in \mathbb{R}^{d \times m}$ and $\mathbf{W}_{V}^{\ell} \in \mathbb{R}^{m \times d}$.

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} \mathbf{W}_{O}^{\ell} \mathbf{W}_{V}^{\ell} \mathbf{X} \cdot \sigma\left[L^{\ell}(X \otimes X)\right]
$$

Where L^{ℓ} is linear, $\mathbf{W}_{O}^{\ell} \in \mathbb{R}^{d \times m}$ and $\mathbf{W}_{V}^{\ell} \in \mathbb{R}^{m \times d}$.

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} T^{\ell}\left(\mathbf{X} \cdot \sigma\left[L^{\ell}(X \otimes X)\right]\right)
$$

Where L^{ℓ} is linear, T^{ℓ} is linear and at most rank- m.

Review of transformer blocks: attention layer

Let $\mathbf{X} \in \mathbb{R}^{d \times n}$. Let σ be a column-wise softmax. Define:

$$
\operatorname{Attn}(\mathbf{X})=\mathbf{X}+\sum_{\ell=1}^{h} T^{\ell}\left(\mathbf{X} \cdot \sigma\left[L^{\ell}(X \otimes X)\right]\right)
$$

Where L^{ℓ} is linear, T^{ℓ} is linear and at most rank- m.

Review of transformer blocks: feedforward layer

Notice that the feedforward layer is just a single layer ReLu neural network applied componentwise; thus, it uses shared weights:

$$
\mathrm{FF}(\mathbf{X})=\mathbf{X}+\mathbf{W}_{2} \cdot \operatorname{ReLu}\left(\mathbf{W}_{1} \cdot \mathbf{X}+\mathbf{b}_{1} \mathbf{1}_{n}^{\top}\right)+\mathbf{b}_{2} \mathbf{1}_{n}^{\top}
$$

for all tokens \mathbf{X}_{i}.

Review of transformer blocks: skip connections

Because of the skip connections in both the attention and feedforward layers, each block can turn on/off either layer:

$$
\begin{aligned}
\operatorname{Attn}(\mathbf{X}) & =\mathbf{X}+\sum_{\ell=1}^{h} \mathbf{W}_{O}^{\ell} \mathbf{W}_{V}^{\ell} \mathbf{X} \cdot \sigma\left[\left(\mathbf{W}_{K}^{\ell} \mathbf{X}\right)^{\top}\left(\mathbf{W}_{Q}^{\ell} \mathbf{X}\right)\right] \\
\mathrm{FF}(\mathbf{X}) & =\mathbf{X}+\mathbf{W}_{2} \cdot \operatorname{ReLu}\left(\mathbf{W}_{1} \cdot \mathbf{X}+\mathbf{b}_{1} \mathbf{1}_{n}^{\top}\right)+\mathbf{b}_{2} \mathbf{1}_{n}^{\top}
\end{aligned}
$$

by setting \mathbf{W}_{O}^{ℓ} or $\left[\begin{array}{ll}\mathbf{W}_{2} & \mathbf{b}_{2}\end{array}\right]$ to zero.

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction. Compose attention layers for higher-order interaction.

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction. Compose attention layers for higher-order interaction.
2. Transform \mathbf{X} into $\widetilde{\mathbf{X}}$, so that \mathbf{X} is encoded into each $\widetilde{\mathbf{X}}_{i}$.

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction. Compose attention layers for higher-order interaction.
2. Transform \mathbf{X} into $\widetilde{\mathbf{X}}$, so that \mathbf{X} is encoded into each $\widetilde{\mathbf{X}}_{i}$.

- We'll call this a contextual mapping as $\widetilde{\mathbf{X}}_{i}$ captures not just \mathbf{X}_{i} but its context \mathbf{X}.

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction. Compose attention layers for higher-order interaction.
2. Transform \mathbf{X} into $\widetilde{\mathbf{X}}$, so that \mathbf{X} is encoded into each $\widetilde{\mathbf{X}}_{i}$.

- We'll call this a contextual mapping as $\widetilde{\mathbf{X}}_{i}$ captures not just \mathbf{X}_{i} but its context \mathbf{X}.

3. Apply usual universal approximation of feedforward neural nets to get approximation result.

Caveat: permutation equivariance

Definition

A map $f: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ is permutation equivariant if for all permutations $P \in \Sigma_{n}$ and input $\mathbf{X} \in \mathbb{R}^{d \times n}$,

$$
f(\mathbf{X} P)=f(\mathbf{X}) P
$$

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

Proof.

The proof is direct. Let P be a permutation matrix. Then:

$$
\begin{aligned}
\operatorname{Attn}(\mathbf{X} P) & =\mathbf{X} P+\sum_{\ell=1}^{h} \mathbf{W}_{O, V}^{\ell} \mathbf{X} P \cdot \sigma\left[\left(\mathbf{W}_{K}^{\ell} \mathbf{X} P\right)^{\top}\left(\mathbf{W}_{Q}^{\ell} \mathbf{X} P\right)\right] \\
& =\mathbf{X} P+\sum_{\ell=1}^{h} \mathbf{W}_{O, V}^{\ell} \mathbf{X} P P^{\top} \cdot \sigma\left[\left(\mathbf{W}_{K}^{\ell} X\right)^{\top}\left(\mathbf{W}_{Q}^{\ell} \mathbf{X}\right)\right] P \\
& =\operatorname{Attn}(\mathbf{X}) P, \\
\text { since } P P^{\top}= & I . \text { Proof similar for } \mathrm{FF}(\mathbf{X} P)=\mathrm{FF}(\mathbf{X}) P .
\end{aligned}
$$

Main result

Universal approximation theorem

Theorem
Let $f: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ be a continuous and permutation equivariant function with compact support.

Universal approximation theorem

Theorem

Let $f: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ be a continuous and permutation equivariant function with compact support. Then, for all
$1 \leq p<\infty$ and $\epsilon>0$, there is a transformer network g such that:

$$
\mathrm{d}_{p}(f, g):=\left(\int\|f(\mathbf{X})-g(\mathbf{X})\|_{p}^{p} d \mathbf{X}\right)^{1 / p}<\epsilon .
$$

Generalized transformers

We will consider generalized transformers where:

Generalized transformers

We will consider generalized transformers where:

- We may replace the softmax σ by a hardmax σ_{H}.

Generalized transformers

We will consider generalized transformers where:

- We may replace the softmax σ by a hardmax σ_{H}.
- We may replace ReLu with any $\phi \in \Phi$, where Φ consists of 3-piecewise linear function with at least one constant piece.

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized transformers (with respect to the metric d_{p}).

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized transformers (with respect to the metric d_{p}).

Proof sketch.

- $\sigma(\lambda \mathbf{A}) \rightarrow \sigma_{H}(\mathbf{A})$ as $\lambda \rightarrow \infty$.
- Any $\phi \in \Phi$ can be arbitrarily approximated by four ReLu's.

Proof sketch

1. Without loss of generality, let $\operatorname{supp}(f)=[0,1]^{d \times n}$.

Proof sketch

1. Without loss of generality, let $\operatorname{supp}(f)=[0,1]^{d \times n}$.
2. Quantize $[0,1]^{d}$ to a grid $\mathbb{G}_{\delta}:=\{0, \delta, \ldots, 1-\delta\}^{d \times n}$.

Proof sketch

1. Without loss of generality, let $\operatorname{supp}(f)=[0,1]^{d \times n}$.
2. Quantize $[0,1]^{d}$ to a grid $\mathbb{G}_{\delta}:=\{0, \delta, \ldots, 1-\delta\}^{d \times n}$.
3. Prove transformers can quantize the cube, $[0,1]^{d \times n} \rightarrow \mathbb{G}_{\delta}$.

Proof sketch

1. Without loss of generality, let $\operatorname{supp}(f)=[0,1]^{d \times n}$.
2. Quantize $[0,1]^{d}$ to a grid $\mathbb{G}_{\delta}:=\{0, \delta, \ldots, 1-\delta\}^{d \times n}$.
3. Prove transformers can quantize the cube, $[0,1]^{d \times n} \rightarrow \mathbb{G}_{\delta}$.
4. Prove approximation result for functions $\mathbb{G}_{\delta} \rightarrow \mathbb{R}^{d \times n}$.

Quantization

Figure 2: An input $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right) \in \mathbb{R}^{d \times n}$

Quantization

Figure 2: An input $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right) \in \mathbb{R}^{d \times n}$

Quantization

Define the scalar quantization map $g_{\text {s.q. }}$ as:

$$
g_{\mathrm{s.q.}}(x)= \begin{cases}\lfloor x / \delta\rfloor \cdot \delta & x \in[0,1) \\ -\delta^{n d} & \text { o.w }\end{cases}
$$

Quantization

Define the scalar quantization map $g_{\text {s.q. }}$ as:

$$
g_{\mathrm{s.q.}}(x)= \begin{cases}\lfloor x / \delta\rfloor \cdot \delta & x \in[0,1) \\ -\delta^{n d} & \text { o.w }\end{cases}
$$

The map $g_{\mathrm{s} . \mathrm{q} .}$ rounds $x \in[0,1)$ down to the nearest grid point.

Feedforward layers can quantize the cube

Lemma

The map $q_{\text {s.q. }}$ can be implemented using $\left(\frac{1}{\delta}+1\right)$ feedforward layers with activation $\phi \in \Phi$ and each hidden layer dimension equal to 1 .

Feedforward layers can quantize the cube

Lemma

The map $q_{\text {s.q. }}$ can be implemented using $\left(\frac{1}{\delta}+1\right)$ feedforward layers with activation $\phi \in \Phi$ and each hidden layer dimension equal to 1 .

Proof sketch.

More generally, $[0,1]^{d}$ can be quantized using $d\left(\frac{1}{\delta}+1\right)$ layers.

Contextual mapping

Definition
Let $\mathbb{L} \subset \mathbb{R}^{d \times n}$ be a finite set. Let $L, L^{\prime} \in \mathbb{L}$. A contextual mapping is a map $q: \mathbb{L} \rightarrow \mathbb{R}^{1 \times n}$ such that

Contextual mapping

Definition

Let $\mathbb{L} \subset \mathbb{R}^{d \times n}$ be a finite set. Let $L, L^{\prime} \in \mathbb{L}$. A contextual mapping is a map $q: \mathbb{L} \rightarrow \mathbb{R}^{1 \times n}$ such that

- If two columns are distinct $L_{i} \neq L_{j}$, then $q(L)_{i} \neq q(L)_{j}$.

Contextual mapping

Definition

Let $\mathbb{L} \subset \mathbb{R}^{d \times n}$ be a finite set. Let $L, L^{\prime} \in \mathbb{L}$. A contextual mapping is a map $q: \mathbb{L} \rightarrow \mathbb{R}^{1 \times n}$ such that

- If two columns are distinct $L_{i} \neq L_{j}$, then $q(L)_{i} \neq q(L)_{j}$.
- If L and L^{\prime} are not permutations, then for $1 \leq i, i^{\prime} \leq n$:

$$
q(L)_{i} \neq q\left(L^{\prime}\right)_{i^{\prime}} .
$$

Contextual mapping

Definition

Let $\mathbb{L} \subset \mathbb{R}^{d \times n}$ be a finite set. Let $L, L^{\prime} \in \mathbb{L}$. A contextual mapping is a map $q: \mathbb{L} \rightarrow \mathbb{R}^{1 \times n}$ such that

- If two columns are distinct $L_{i} \neq L_{j}$, then $q(L)_{i} \neq q(L)_{j}$.
- If L and L^{\prime} are not permutations, then for $1 \leq i, i^{\prime} \leq n$:

$$
q(L)_{i} \neq q\left(L^{\prime}\right)_{i^{\prime}} .
$$

In other words, if $q(L)_{i}$ is an encoding of L_{i}, then from $q(L)_{i}$, we can recover not only L_{i} but also its context L.

Contextual mapping

Figure 3: A contextual mapping $q: \mathbb{G}_{\delta} \rightarrow \mathbb{R}^{1 \times n}$.

Simplification of \mathbb{G}_{δ}

Define $\widetilde{\mathbb{G}}_{\delta} \subset \mathbb{G}_{\delta}$ by:

$$
\widetilde{\mathbb{G}}_{\delta}:=\left\{L \in \mathbb{G}_{\delta}: L \text { has distinct columns }\right\} .
$$

Simplification of \mathbb{G}_{δ}

Define $\widetilde{\mathbb{G}}_{\delta} \subset \mathbb{G}_{\delta}$ by:

$$
\widetilde{\mathbb{G}}_{\delta}:=\left\{L \in \mathbb{G}_{\delta}: L \text { has distinct columns }\right\} .
$$

- Notice that $\left|\mathbb{G}_{\delta}-\widetilde{\mathbb{G}}_{\delta}\right|=O\left(\delta^{d}\left|\mathbb{G}_{\delta}\right|\right)$, so $\widetilde{\mathbb{G}}_{\delta}$ contain essentially all of \mathbb{G}_{δ}.

Self-attention layers can express contextual mappings

Lemma

There exists a map $g_{\mathrm{con}}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ composed of $\frac{1}{\delta^{d}}+1$ self-attention layers, vector $u \in \mathbb{R}^{d}$ and $q(L):=u^{\top} g_{\text {con }}(L)$ where:

1. q is a contextual mapping of $\widetilde{\mathbb{G}}_{\delta}$
2. There exists $0<a<b$ such that:
a. if $L \in \widetilde{\mathbb{G}}_{\delta}$, then $q(L) \in[a, b]^{1 \times n}$
b. if $L \in\left\{-\delta^{n d}, 0, \delta, \ldots, 1-\delta\right\}^{d \times n}-\widetilde{\mathbb{G}}_{\delta}$, then $q(L) \notin[a, b]^{1 \times n}$.

Feedforward layers can interpolate

Lemma

Let $f: \widetilde{\mathbb{G}}_{\delta} \rightarrow \mathbb{R}^{d \times n}$ be any permutation equivariant function. Given $g_{\text {con }}$ as above, there exists $g_{\text {out }}: \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d \times n}$ a composition of feedforward layers such that:

$$
g_{\text {out }} \circ g_{\text {con }}(L)= \begin{cases}f(L) & L \in \widetilde{\mathbb{G}}_{\delta} \\ 0 & L \in\left\{-\delta^{n d}, 0, \delta, \ldots, 1-\delta\right\}^{d \times n}-\widetilde{\mathbb{G}}_{\delta} .\end{cases}
$$

Proof: feedforward layers can interpolate

Proof sketch.
A neural network can interpolate on $O\left(n \delta^{-d n} / n!\right)$ points of \mathbb{R}.

We need at most $O\left(n \delta^{-d n} / n!\right)$ layers with hidden dimension 1 .

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\widetilde{\mathbb{G}_{\delta}}$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\widetilde{\mathbb{G}}_{\delta}$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\widetilde{\mathbb{G}_{\delta}}$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.
- Attention can compute $r=\max _{i, j} k_{i}-k_{j}$ and add $N r$ to any coordinate i such that $k_{i}=k$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\widetilde{\mathbb{G}}_{\delta}$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.
- Attention can compute $r=\max _{i, j} k_{i}-k_{j}$ and add $N r$ to any coordinate i such that $k_{i}=k$.
- Sequentially apply transform, for $k=0, \ldots, N-1$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\widetilde{\mathbb{G}}_{\delta}$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.
- Attention can compute $r=\max _{i, j} k_{i}-k_{j}$ and add $N r$ to any coordinate i such that $k_{i}=k$.
- Sequentially apply transform, for $k=0, \ldots, N-1$.
- If O is the output, then $k_{i} / N=O_{i} \bmod 1$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\stackrel{\delta}{\mathbb{G}} \delta$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.
- Attention can compute $r=\max _{i, j} k_{i}-k_{j}$ and add $N r$ to any coordinate i such that $k_{i}=k$.
- Sequentially apply transform, for $k=0, \ldots, N-1$.
- If O is the output, then $k_{i} / N=O_{i} \bmod 1$.
- All k_{i} 's can be recovered from $\max _{j} O_{j}$.

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let $d=1$. We can use $\frac{1}{\delta}+1$ attention layers to construct a contextual mapping of $\stackrel{\delta}{\mathbb{G}} \delta$. Assume $\frac{1}{\delta}=N \in \mathbb{N}$.

- WLOG, $\widetilde{G}_{\delta} \ni L=\frac{1}{N}\left(k_{1}, \ldots, k_{n}\right)$ where $k_{i} \in \mathbb{N}$.
- Attention can compute $r=\max _{i, j} k_{i}-k_{j}$ and add $N r$ to any coordinate i such that $k_{i}=k$.
- Sequentially apply transform, for $k=0, \ldots, N-1$.
- If O is the output, then $k_{i} / N=O_{i} \bmod 1$.
- All k_{i} 's can be recovered from $\max _{j} O_{j}$.
- Attention can compute $s=\max _{j} O_{j}$ and add $N^{n+1} s$ to each coordinate. Thus, all k_{i} 's are encoded into $O_{j}+N^{n+1} s$.

Proof: self-attention can express contextual mappings
For $k=0, \ldots, N-1$:

A summary in pictures

A summary in pictures

A summary in pictures

A summary in pictures

Position encoding

If we can preprocess $\mathbf{X} \in[0,1]^{d \times n}$ via position encoding:

$$
\mathbf{X} \mapsto \mathbf{X}+\mathbf{1} \cdot(0, \ldots, n-1)
$$

then the universal approximation theorem extends to general sequence-to-sequence functions.

