Transformers are universal approximators
Yun, Bhojanapalli, Rawat, Reddi, Kumar ‘20

Geelon So
(agso@eng.ucsd.edu)

April 22, 2020

1/35

agso@eng.ucsd.edu

arXiv.org > cs > arXiv:1912.10077

Computer Science > Machine Learning
[Submitted on 20 Dec 2019 (v1), last revised 25 Feb 2020 (this version, v2)]

Are Transformers universal approximators of sequence-to-sequence functions?
Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar

Despite the widespread adoption of Transformer models for NLP tasks, the expressive power of these models is not well-understood. In this
paper, we establish that Transformer models are universal of q to-seq
functions with compact support, which is quite surprising given the amount of shared in these models. F , using
positional encodings, we circumvent the restriction of permutation equivariance, and show that Transformer models can universally

arbitrary a to-seq functions on a compact domain. Interestingly, our proof techniques clearly highlight
the different roles of the self-attention and the feed-forward layers in T In particular, we prove that fixed width self-attention
layers can compute contextual mappings of the input sequences, playing a key role in the universal approximation property of Transformers.
Based on this insight from our analysis, we consider other simpler to self-attention layers and ically evaluate them.

2/35

Introduction

3/35

Background: transformer networks

Transformer networks are a recent approach to learning
sequence-to-sequence functions,

f . Rdxn — Rdxn

4/35

Background: interaction

The difficulty of learning seq-to-seq functions lies with the
interactions between the tokens in the sequence.

5/35

Background: interaction

The difficulty of learning seq-to-seq functions lies with the
interactions between the tokens in the sequence.

» If tokens don't interact in the computation of f, then we'd
expect for some f;'s:

flxe,. ... xn) = (fl(:rl),,fn(:nn))

5/35

Background: interaction

|'THE_| —>|EL|

|S’mbsr~\’t| —>| FSTUDIANTE, |
A

|ER—\6&T|/7| INTELIGENTE |

~N | LUMINOSO |

Figure 1. An example from machine translation.

6/35

Background: sequential vs. parallel framework

» RNNs and LSTMs deal with interaction by keeping a
memory /summary of previous tokens. The underlying
framework is sequential.

7/35

Background: sequential vs. parallel framework

» RNNs and LSTMs deal with interaction by keeping a
memory /summary of previous tokens. The underlying
framework is sequential.

» The analytic framework for transformers assume parallel
access to either all tokens (or at least all relevant tokens).

7/35

Paper summary

1. Transformer networks are universal approximators for
continuous seq-to-seq functions on compact domain.

8/35

Paper summary

1. Transformer networks are universal approximators for
continuous seq-to-seq functions on compact domain.

2. Self-attention layers can compute contextual mappings of
input sequences.

8/35

Review of transformer blocks

A transformer block is a seq-to-seq function R4*" — RIxn
composed of:

» an attention layer that exposes pairwise interaction

» a feedforward layer to perform computation

9/35

Review of transformer blocks

A transformer block is a seq-to-seq function R4*" — RIxn
composed of:

» an attention layer that exposes pairwise interaction
» a feedforward layer to perform computation

A transformer network is a composition of transformer blocks.

9/35

Review of transformer blocks

le('rtﬁ n Jetstrs o [EJ\

T4

[y —"r

FEEDFRUARD LAMERL

I_AT(‘ENT oN A ER J

Wiy

1.\?,&-. w veshs o RA

10/35

Review of transformer blocks: attention layer

/- j e
Lol

/r fmem e — lw R >R,

mnk ~
2t

o (NKX‘]\)T (‘\NQ x-‘>

¢ bilinear functinn
m Mf”b

11/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:
I
Attn(X) = X+ Y, WEW{X - 0 [(WEX)T(W(X)]

Where Wi, W¢, € R™*4, W(, € R™ and Wi, € R™*%.

12/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:
I
Attn(X) = X+ 30, WEW(X - o[(WEX)T(WX) |

Where Wi, W¢, € R™*4, W(, € R™ and Wi, € R™*%.

12/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:
Attn(X) = X + Y0, WEWEX o[LY(X @ X) |

Where Lf is linear, Wé € R4*™ and Wf/ e Rm*d,

12/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:
Attn(X) = X + Y0, WHWE X - o[L{(X @ X)]

Where Lf is linear, Wé € R4*™ and Wf/ e Rm*d,

12/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:

Attn(X) =X + Y, T (X o[L4(X ® X)])

Where Lf is linear, T is linear and at most rank-m.

12/35

Review of transformer blocks: attention layer

Let X € R¥*"_ Let o be a column-wise softmax. Define:

Attn(X) = X+ 30 T (X - o [LY(X ® X))

Where Lf is linear, T is linear and at most rank-m.

12/35

Review of transformer blocks: feedforward layer

Notice that the feedforward layer is just a single layer ReLu neural
network applied componentwise; thus, it uses shared weights:

FF(X) =X+ Wy -ReLu(W; - X+ by 1]) + by 1]

for all tokens X;.

13/35

Review of transformer blocks: skip connections

Because of the skip connections in both the attention and
feedforward layers, each block can turn on/off either layer:

h
Attn(X) =X +) WHEW{X 0 [(WEX)(W(X)]
/=1
FF(X) = X + Wy ReLu(W; - X + bi1]) + b1/,

by setting W, or [W3 by] to zero.

14/35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

15/35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into)~(so that X is encoded into each 5(1-.

15/35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into 5(so that X is encoded into each 5(1-.

We'll call this a contextual mapping as XL captures not just
X, but its context X.

15/35

Universal approximation intuition

1. An attention layer allows us to capture pairwise interaction.
Compose attention layers for higher-order interaction.

2. Transform X into 5(so that X is encoded into each 5(1-.

We'll call this a contextual mapping as XL captures not just
X, but its context X.

3. Apply usual universal approximation of feedforward neural
nets to get approximation result.

15/35

Caveat: permutation equivariance

Definition
A map f : R — R4X" js permutation equivariant if for all
permutations P € ¥,, and input X € R¥",

f(XP) = f(X)P.

16/35

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

17/35

Caveat: permutation equivariance

Claim
Transformer blocks are permutation equivariant.

Proof.

The proof is direct. Let P be a permutation matrix. Then:

h
Attn(XP) = XP + > W§XP o[(WEXP) (WHXP)]
/=1
h
=XP+Y W, XPPT o[(WiX) (WHX)| P
/=1
= Attn(X)P,

since PPT = I. Proof similar for FF(XP) = FF(X)P. O

17/35

Main result

18/35

Universal approximation theorem

Theorem
Let f: R¥>™ — RIX" pe a continuous and permutation
equivariant function with compact support.

19/35

Universal approximation theorem

Theorem

Let f: R¥>™ — RIX" pe a continuous and permutation
equivariant function with compact support. Then, for all

1 <p<ooande >0, there is a transformer network g such that:

0= ([1500 - sy ax) * e

19/35

Generalized transformers

We will consider generalized transformers where:

20/35

Generalized transformers

We will consider generalized transformers where:

» We may replace the softmax o by a hardmax op.

20/35

Generalized transformers

We will consider generalized transformers where:
» We may replace the softmax o by a hardmax op.

» We may replace RelLu with any ¢ € ®, where ® consists of

3-piecewise linear function with at least one constant piece.

20/35

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized
transformers (with respect to the metric d,).

21/35

Approximation of generalized transformers

Lemma
The class of transformers is dense in the class of generalized
transformers (with respect to the metric d,).

Proof sketch.
» 0(AA) = or(A) as A — 0.
» Any ¢ € ® can be arbitrarily approximated by four Relu's.
O

21/35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]%*".

22/35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]%*".
2. Quantize [0,1]¢ to a grid G4 := {0,4,...,1 — §}&.

22/35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]%*".
2. Quantize [0,1]¢ to a grid G4 := {0,4,...,1 — §}&.

3. Prove transformers can quantize the cube, [0, 1]¥" — Gj.

22/35

Proof sketch

1. Without loss of generality, let supp(f) = [0, 1]%*".

2. Quantize [0,1]¢ to a grid G4 := {0,4,...,1 — §}&.

3. Prove transformers can quantize the cube, [0, 1]¥" — Gj.
4

. Prove approximation result for functions G5 — R*™.

22/35

Quantization

X
5
d
fon]
Figure 2: An input X = (Xy,...,X,) € R¥x"

23/35

Quantization

Figure 2:

23/35

Quantization

Define the scalar quantization map g . as:

Gsq () = {Wfﬂ 5 xzel01)

_5nd o

24 /35

Quantization

Define the scalar quantization map g . as:

Gsq () = {Wfﬂ 5 xzel01)

—gnd 0.W.

The map gs.q. rounds z € [0,1) down to the nearest grid point.

24/35

Feedforward layers can quantize the cube

Lemma
The map gs.q. can be implemented using (% + 1) feedforward layers
with activation ¢ € ® and each hidden layer dimension equal to 1.

25/35

Feedforward layers can quantize the cube

Lemma
The map gs.q. can be implemented using (% + 1) feedforward layers
with activation ¢ € ® and each hidden layer dimension equal to 1.

Proof sketch.

5] -

More generally, [0,1]% can be quantized using d (% +1) layers. O

25/35

Contextual mapping

Definition
Let L C R¥™ be a finite set. Let L,L' € L. A contextual
mapping is a map q : L. — R such that

26 /35

Contextual mapping

Definition
Let L C R pe a finite set. Let L, L' € L. A contextual
mapping is a map q : L. — R such that

» If two columns are distinct L; # Lj, then q(L); # q(L);.

26/35

Contextual mapping

Definition
Let L C R pe a finite set. Let L, L' € L. A contextual
mapping is a map q : L. — R such that

» If two columns are distinct L; # Lj, then q(L); # q(L);.

» If L and L' are not permutations, then for 1 < i,i’ < n:

a(L); # a(L)y.

26/35

Contextual mapping

Definition
Let L C R pe a finite set. Let L, L' € L. A contextual
mapping is a map q : L. — R such that

» If two columns are distinct L; # Lj, then q(L); # q(L);.
» If L and L' are not permutations, then for 1 < i,i < n:

a(L); # a(L)y.

In other words, if g(L); is an encoding of L;, then from ¢(L);, we
can recover not only L; but also its context L.

26/35

Contextual mapping

Figure 3: A contextual mapping ¢ : G5 — R'*™,

27/35

Simplification of Gy

Define @5 C Gs by:

Gs := {L € Gy : L has distinct columns}.

28/35

Simplification of G

Define @5 C Gs by:

@5 :={L € Gy : L has distinct columns}.

» Notice that ‘Gg — @5‘ =0 (6d|G5|), SO @5 contain
essentially all of Gg.

28/35

Self-attention layers can express contextual mappings

Lemma
There exists a map geon : R¥*™ — R4 composed of 5%1 +1

self-attention layers, vector u € R and q(L) := u" geon(L) where:

1. q is a contextual mapping of @5
2. There exists 0 < a < b such that:
a. if L € Gy, then q(L) € [a, b]**"™

b. if L € {—6"%,0,6,...,1— 6} — Gy, then q(L) ¢ [a,b]"*™.

29/35

Feedforward layers can interpolate

Lemma

Let f: @5 — R¥X™ be any permutation equivariant function.
Given geon as above, there exists gout : R¥*™ — R 4
composition of feedforward layers such that:

f(L) Le€Gs

ut © geon (L) = G
Gout © Geon (L) {0 Le{=6"0,6,...,1 =5} — Gy.

30/35

Proof: feedforward layers can interpolate

Proof sketch.
A neural network can interpolate on O (nd‘d”/n!) points of R.

< _>

We need at most O(nd~% /n!) layers with hidden dimension 1. [

31/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of GG5. Assume % =N eN.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of GG5. Assume % =N eN.

» WLOG, G5 > L = & (k1,...,k,) where k; € N.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of GG5. Assume % =N eN.

» WLOG, G5 > L = & (k1,...,k,) where k; € N.

» Attention can compute r = max; j k; — k; and add Nr to any
coordinate 7 such that k; = k.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of GG5. Assume % =N eN.

» WLOG, G5 > L = & (k1,...,k,) where k; € N.

» Attention can compute r = max; j k; — k; and add Nr to any
coordinate 7 such that k; = k.

» Sequentially apply transform, for k=0,..., N — 1.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of @5. Assume % =N eN.
» WLOG, G5 > L = & (k1,...,k,) where k; € N.
» Attention can compute r = max; j k; — k; and add Nr to any
coordinate 7 such that k; = k.

» Sequentially apply transform, for k=0,..., N — 1.
If O is the output, then k;/N = O; mod 1.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of @5. Assume % =N eN.
» WLOG, G5 > L = & (k1,...,k,) where k; € N.
» Attention can compute r = max; ; k; — k; and add N7 to any
coordinate ¢ such that k; = k.

» Sequentially apply transform, for k=0,..., N — 1.

If O is the output, then k;/N = O; mod 1.
All k;'s can be recovered from max; O;.

32/35

Proof: self-attention can express contextual mappings

Proof sketch, 1D case.
Let d = 1. We can use % + 1 attention layers to construct a
contextual mapping of @5. Assume % =N eN.
» WLOG, G5 > L = & (k1,...,k,) where k; € N.
» Attention can compute r = max; ; k; — k; and add N7 to any
coordinate ¢ such that k; = k.

» Sequentially apply transform, for k=0,..., N — 1.

If O is the output, then k;/N = O; mod 1.
All k;'s can be recovered from max; O;.

» Attention can compute s = max; O; and add N"Fls to each
coordinate. Thus, all k;'s are encoded into O; + Ntlg,

O

32/35

Proof: self-attention can express contextual mappings
F;V' kT-D) "‘IA]-L"

r= maxc X.}"XJ

i
t

>

all
\ @%\rm; deaas | X+ X_Xr*ﬂy

\\\ l Heeion. &

~

N
~

N

N kN

>
e otk
enab.v?'(“'\A\ r

33/35

A summary in pictures

=

Lo, ‘]J

34/35

A summary in pictures

34/35

A summary in pictures

34/35

A summary in pictures

T

34/35

Position encoding

If we can preprocess X € [0,1]%%"

via position encoding:
X—=X+1-(0,...,n—1),

then the universal approximation theorem extends to general
sequence-to-sequence functions.

35/35

	Introduction
	Main result

