ZKP from MPC

April 16, 2019

TOY SCENARIO

Alice: I'm not showing you; you might steal my design.

TOY SCENARIO: ZKP PROTOCOL

Step 1: Alice cuts up her hat (read: proof) into pieces.

TOY SCENARIO: ZKP PROTOCOL

Step 2: Alice stores each piece into a different safe and then gives the safes to Bob.

TOY SCENARIO: ZKP PROTOCOL

Step 3: Bob asks Alice to open two of the safes.

TOY SCENARIO: ZKP PROTOCOL

Step 3: Bob asks Alice to open two of the safes.
He checks to see if the pieces fit together (read: the views of the hat are consistent).

TOY SCENARIO: HAT LEMMA

Denote the hat pieces by H_{1}, \cdots, H_{n}. We say that a collection of hat pieces are consistent if they fit together and are clearly from the same hat.

TOY SCENARIO: HAT LEMMA

Denote the hat pieces by H_{1}, \cdots, H_{n}. We say that a collection of hat pieces are consistent if they fit together and are clearly from the same hat.

Lemma. $\quad H_{1}, \cdots, H_{n}$ are consistent if and only if H_{i} and H_{j} are pairwise consistent for each $1 \leq i<j \leq n$.

TOY SCENARIO: EASY COROLLARY

Corollary. If H_{1}, \cdots, H_{n} are not consistent, then there exists at least one pair of H_{i} and H_{j} that are not consistent with each other.

TOY SCENARIO: EASY COROLLARY

Corollary. If H_{1}, \cdots, H_{n} are not consistent, then there exists at least one pair
of H_{j} and H_{j} that are not consistent with each other.
Question. If Alice is lying and her hat pieces are not consistent, what is the probability that Bob discovers her deceit?

TOY SCENARIO: EASY COROLLARY

Corollary. If H_{1}, \cdots, H_{n} are not consistent, then there exists at least one pair of H_{i} and H_{j} that are not consistent with each other.

Question. If Alice is lying and her hat pieces are not consistent, what is the probability that Bob discovers her deceit?

Answer.
$\operatorname{Pr}($ Bob discovers Alice's deceit $) \geq\binom{ n}{2}^{-1}$

TOY SCENARIO: EASY COROLLARY

Corollary. If H_{1}, \cdots, H_{n} are not consistent, then there exists at least one pair of H_{i} and H_{j} that are not consistent with each other.

Question. If Alice is lying and her hat pieces are not consistent, what is the probability that Bob discovers her deceit?

Answer.

$$
\operatorname{Pr}(\text { Bob discovers Alice's deceit })>\frac{1}{n^{2}}
$$

TOY SCENARIO: LIMITATION

Bob still learns something about Alice's hat designs from her cut-up pieces.

TOY SCENARIO: LIMITATION

Bob still learns something about Alice's hat designs from her cut-up pieces.

Question. Is there a way to split up her proof so that no two shares can be combined to reveal any information?

TOY SCENARIO: LIMITATION

Bob still learns something about Alice's hat designs from her cut-up pieces.

Question. Is there a way to split up her proof so that no two shares can be combined to reveal any information?

Answer. Use secure multi-party computation!

ZKP from MPC

Zero-Knowledge from Secure Multiparty Computation*

Yuval Ishai ${ }^{\dagger}$
Eyal Kushilevitz ${ }^{\ddagger}$
Rafail Ostrovsky ${ }^{\S}$
Amit Sahai ${ }^{9}$

Abstract
A zero-knowledge proof allows a prover to convince a verifier of an assertion without revealing any further information beyond the fact that the assertion is true. Secure multiparty computation allows n mutually suspicious players to jointly compute a function of their local inputs without revealing to any corrupted players additional information beyond the output of the function.

We present a new general connection between these two fundamental notions. Specifically, we present a general construction of a zero-knowledge proof for an NP relation $R(x, w)$ which only makes a black-box use of any secure protocol for a related multi-party functionality f. The latter protocol is only required to be secure against a small number of "honest but curious" players. We also present a varian of the basic construction that can leverage security against a large number of malicious players to obtain better efficiency

As an application, one can translate previous results on the efficiency of secure multiparty com putation to the domain of zero-knowledge, improving over previous constructions of efficient zero knowledge proofs. In particular, if verifying R on a witness of length m can be done by a circuit C of size s, and assuming one-way functions exist, we get the following types of zero-knowledge proof protocols:

- Approaching the witness length. If C has constant depth over $\wedge, \vee, \oplus, \neg$ gates of unbounded fan-in, we get a zero-knowledge proof protocol with communication complexity $m \cdot \operatorname{poly}(k)$ $\operatorname{poly} \log (s)$, where k is a security parameter.
- "Constant-rate" zero-knowledge. For an arbitrary circuit C of size s and a bounded fan-in, we get a zero-knowledge protocol with communication complexity $O(s)+\operatorname{poly}(k, \log s)$. Thus, for large circuits, the ratio between the communication complexity and the circuit size approaches a constant. This improves over the $O(\mathrm{ks})$ complexity of the best previous protocols.

Keywords: Cryptography, zero-knowledge, secure computation, black-box reductions

PRELIMINARIES

Definition. An NP-relation $R(\mathrm{x}, \mathrm{w})$ is an efficiently decidable binary relation that is polynomially bounded (i.e. $|\mathrm{w}| \leq \mathrm{p}(|\mathrm{x}|)$ where p polynomial).

PRELIMINARIES

Definition. An NP-relation $R(\mathrm{x}, \mathrm{w})$ is an efficiently decidable binary relation
that is polynomially bounded (i.e. $|\mathrm{w}| \leq \mathrm{p}(|\mathrm{x}|)$ where p polynomial).
Examples. Let $x=(V, E)$ be a graph
I. w is a Hamiltonian path in x
II. w is a 3 -coloring of x

Let $x \in(\mathbf{Z} / n \mathbf{Z})^{x}$ be relatively prime to n
III. W is a square root of x (i.e. $w^{2} \cong x \bmod n$)

PRELIMINARIES

Definition. An NP-relation $R(\mathrm{x}, \mathrm{w})$ is an efficiently decidable binary relation
that is polynomially bounded (i.e. $|\mathrm{w}| \leq \mathrm{p}(|x|)$ where p polynomial).

Examples. Let $x=(V, E)$ be a graph
I. w is a Hamiltonian path in x
II. w is a 3 -coloring of x

Let $x \in(\mathbf{Z} / n \mathbf{Z})^{x}$ be relatively prime to n
III. w is a square root of x (i.e. $w^{2} \cong x \bmod n$)

Remark. Any NP-relation R defines an NP-language:

$$
L=\{\mathrm{x}: \exists \mathrm{w}, R(\mathrm{x}, \mathrm{w})=1\} .
$$

PRELIMINARIES: GOAL

Bob: Prove it!

Alice: I don't want to share w with you.

HIGH-LEVEL OVERVIEW

Assume that there is an SMPC algorithm f that computes:

$$
\mathrm{f}\left(\mathrm{x}, \mathrm{w}_{1}, \cdots, \mathrm{w}_{n}\right) \equiv R\left(\mathrm{x}, \mathrm{w}_{1} \oplus \cdots \oplus \mathrm{w}_{n}\right)
$$

HIGH-LEVEL OVERVIEW

Assume that there is an SMPC algorithm f that computes:

$$
\mathrm{f}\left(\mathrm{x}, \mathrm{w}_{1}, \cdots, \mathrm{w}_{n}\right) \equiv R\left(\mathrm{x}, \mathrm{w}_{1} \oplus \cdots \oplus \mathrm{w}_{n}\right)
$$

Figure. Each party has a secret share of w, where

$$
\mathrm{w} \equiv \mathrm{w}_{1} \oplus \cdots \oplus \mathrm{w}_{n}
$$

Together, they jointly and privately verify $R(\mathrm{x}, \mathrm{w})$.

HIGH-LEVEL OVERVIEW

Step 1:

Alice simulates the SMPC protocol that verifies that w is a witness to $x \in L$.

HIGH-LEVEL OVERVIEW

Step 1:

 Alice simulates the SMPC protocol that verifies that w is a witness to $x \in L$.Remark. After running the protocol, each party will have a view of the messages it received and sent along with the randomness it used.

HIGH-LEVEL OVERVIEW

Step 1:

 Alice simulates the SMPC protocol that verifies that w is a witness to $x \in L$.Remark. After running the protocol, each party will have a view of the messages it received and sent along with the randomness it used.

These views will act as cut-up pieces of the proof that $\mathrm{x} \in L$.

HIGH-LEVEL OVERVIEW

Recall that a commitment scheme, COM, is a protocol that allows one to commit a message while hiding the message from others. Later, one is able to reveal the original message.

Figure. A commitment protocol is analogous to sending a message locked in a safe. Later in time, the sender can open the safe to reveal the committed message.

HIGH-LEVEL OVERVIEW

Step 2:
Alice commits each of the views using a commitment scheme, sending the commits to Bob.

HIGH-LEVEL OVERVIEW

Step 3:

Bob chooses two commitments for Alice to decommit, revealing two views of the MPC protocol.

HIGH-LEVEL OVERVIEW

Step 3: Bob chooses two commitments for Alice to decommit, revealing two views of the MPC protocol.

Decision. If the views are inconsistent, Bob rejects. Otherwise, Bob accepts.

HIGH-LEVEL OVERVIEW

Remark. The soundness error (i.e. probability that Bob accepts a invalid proof) at this point is as before:

$$
\operatorname{Pr}(\text { Bob accepts a false proof })<1-\frac{1}{n^{2}}
$$

HIGH-LEVEL OVERVIEW

Remark. The soundness error (i.e. probability that Bob accepts
a invalid proof) at this point is as before:
$\operatorname{Pr}($ Bob accepts a false proof $)<1-\frac{1}{n^{2}}$
We could make this probability negligibly small (say, w.p. 2^{-k}) through repetitions (say, kn^{2} times).

HIGH-LEVEL OVERVIEW: UPSHOT

Main Result. We can build ZKP protocols given black-box access to MPC protocols.

FORMALITIES

Let P be the prover and V be the verifier. Let L be an NP-language.

FORMALITIES

Let P be the prover and V be the verifier. Let L be an NP-language.
Definition A zero-knowledge proof $(Z K P)$ is a protocol (P, V) where for each
(informal). $x \in L$, the prover tells the verifier essentially nothing but $x \in L$.

FORMALITIES

Let P be the prover and V be the verifier. Let L be an NP-language.
Definition A zero-knowledge proof $(Z K P)$ is a protocol (P, V) where for each (informal). $x \in L$, the prover tells the verifier essentially nothing but $x \in L$.

FORMALITIES

Let P be the prover and V be the verifier. Let L be an NP-language.

Definition A zero-knowledge proof $(Z K P)$ is a protocol (P, V) where for each (informal). $\quad x \in L$, the prover tells the verifier essentially nothing but $x \in L$.

Remark. For a given input x, the prover and verifier will exchange messages according to some underlying probability distribution, say A_{x}, that depends on x.

We call a collection of distributions $\left\{A_{x}\right\}_{x \in x}$ a probability ensemble indexed by X.

FORMALITIES

Definition. Two probability ensembles $\left\{A_{x}\right\}_{x \in x}$ and $\left\{B_{x}\right\}_{x \in x}$ are computationally indistinguishable if for any non-uniform efficient distinguisher D,*

$$
\left|\operatorname{Pr}\left[D\left(A_{x}\right)=1\right]-\operatorname{Pr}\left[D\left(B_{x}\right)=1\right]\right| \leq \varepsilon(|x|)
$$

where $\varepsilon(\cdot)$ is a negligible function.**
*by efficient, we mean probabilistic polytime (PPT) algorithm, and by non-uniform, we mean that the algorithm can depend on the length of x.

[^0]
FORMALITIES

Definition. A protocol (P, V) is a zero-knowledge proof protocol for the NP relation R (with corresponding language L), if it satisfies:
I. completeness: if $x \in L$, and if both players follow the protocol, the verifier always accepts
II. soundness: for every malicious and computationally unbounded prover P^{*}, if $x \notin L$, the verifier accepts with negligible probability $\varepsilon(|x|)$
III. zero-knowledge: for any malicious PPT verifier V^{*}, there is a PPT simulator M^{*}, such that the view of V^{*} is computationally indistinguishable from the output distribution $M^{*}(x)$.

FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V^{*} to be computationally indistinguishable from the output distribution $M^{*}(x)$?

FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V^{*} to be computationally indistinguishable from the output distribution $M^{*}(x)$?

World I

The verifier V^{*} is told x, and then interacts with Alice. All new information is encapsulated in a string:
$\operatorname{View}_{V^{*}}(\mathrm{x}, \mathrm{w})$
the collection of messages and random bits that V^{*} saw through the interaction.

FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V^{*} to be computationally indistinguishable from the output distribution $M^{*}(x)$?

World I

The verifier V^{*} is told x, and then interacts with Alice. All new information is encapsulated in a string:
$\operatorname{View}_{V^{*}}(\mathrm{x}, \mathrm{w})$
the collection of messages and random bits that V^{*} saw through the interaction.

World II

In the simulation world, a random string: $M^{*}(x)$
is generated from the input x. There is no access to Alice.

FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V^{*} to be computationally indistinguishable from the output distribution $M^{*}(x)$?

This means that it is not possible to computationally determine which world we're actually in:
$\left|\operatorname{Pr}\left[D\left(\mathbf{V i e w}_{V^{*}}(x, w)\right)=1\right]-\operatorname{Pr}\left[D\left(M^{*}(x)\right)=1\right]\right| \leq \delta(|x|)$
for some negligible function $\delta(\cdot)$.

FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V^{*} to be computationally indistinguishable from the output distribution $M^{*}(x)$?

This means that it is not possible to computationally determine which world we're actually in:

$$
\left|\operatorname{Pr}\left[D\left(\operatorname{View}_{V^{*}}(x, w)\right)=1\right]-\operatorname{Pr}\left[D\left(M^{*}(x)\right)=1\right]\right| \leq \delta(|x|)
$$

for some negligible function $\delta(\cdot)$.
It follows that Bob will not learn anything about w that he can efficiently recover even after interacting with Alice.

FORMALITIES: MPC PRIMITIVES

Definition An n-party MPC protocol Π_{f} computes f with t-privacy if no (informal). matter how a subset of t corrupted players collude, they can gain no additional information beyond their shared secrets.

FORMALITIES: MPC PRIMITIVES

Definition An n-party MPC protocol Π_{f} computes f with t-privacy if no
(informal). matter how a subset of t corrupted players collude, they can gain
no additional information beyond their shared secrets.

Remark. We can have different versions of t-privacy:

- perfect t-privacy: same distribution
- statistical t-privacy: statistical indistinguishability
- computational t-privacy: computational indistinguishability

FORMALITIES: MPC PRIMITIVES

Definition. Let $1 \leq t<n$. An MPC protocol Π_{f} realizes f with perfect t-privacy if there is a PPT simulator SIM such that for any input $\mathrm{x}, \mathrm{w}_{\mathrm{p}}, \cdots, \mathrm{w}_{n}$, and for any set of corrupted players $T \subset[n]$ of size t, the joint view of those T players is distributed identically to:

$$
\operatorname{SIM}\left(T, x,\left(w_{i}\right)_{i \in T} f_{T}\left(x, w_{1}, \cdots, w_{n}\right)\right) .
$$

Similar definitions for statistical t-privacy and computational t-privacy, with respect to a security parameter k.

ZK PROTOCOL

Zero-knowledge protocol Π_{R} in the commitment-hybrid model

1. The prover picks at random $w_{1}, \ldots, w_{n} \in\{0,1\}^{m}$ whose exclusive-or equals the witness w. She emulates "in her head" the execution of Π_{f} on input $\left(x, w_{1}, \ldots, w_{n}\right)$ (this involves choosing randomness for the n players and running the protocol). Based on this execution, the prover prepares the views V_{1}, \ldots, V_{n} of the n players; she separately commits to each of these n views.
2. Verifier picks at random distinct player indices $i, j \in[n]$ and sends them to the prover.
3. Prover "opens" the commitments corresponding to the two views V_{i}, V_{j}.
4. Verifier accepts if and only if:
(a) the prover indeed successfully opened the two requested views,
(b) the outputs of both P_{i} and P_{j} (which are determined by their views) are 1, and
(c) the two opened views are consistent with each other (with respect to x and Π_{f}, see Definition 2.2).

ZK PROTOCOL

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} from the previous slide is a zero-knowledge proof protocol for the NP-relation R with soundness error $\varepsilon \leq 1-\mathrm{n}^{-2}$.

ZK PROTOCOL

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} from the previous slide is a zero-knowledge proof protocol for the NP-relation R with soundness error $\varepsilon \leq 1-\mathrm{n}^{-2}$.

Proof. COMPLETENESS. Follows from correctness of Π_{f}

ZK PROTOCOL

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} from the previous slide is a zero-knowledge proof protocol for the NP-relation R with soundness error $\varepsilon \leq 1-\mathrm{n}^{-2}$.

Proof. COMPLETENESS. Follows from correctness of Π_{f} SOUNDNESS. Follows from "Hat Lemma".

ZK PROTOCOL

$\begin{array}{ll}\text { Theorem. } & \text { Let } \Pi_{f} \text { be a correct and computational 2-private MPC protocol. } \\ & \text { Then } \Pi_{R} \text { from the previous slide is a zero-knowledge proof } \\ & \text { protocol for the NP-relation } R \text { with soundness error } \varepsilon \leq 1-\mathrm{n}^{-2} . \\ \text { Proof. } & \text { COMPLETENESS. Follows from correctness of } \Pi_{f} \\ & \text { SOUNDNESS. Follows from "Hat Lemma". } \\ & \text { ZERO-KNOWLEDGE. Construct the following simulation } M^{*}(\mathrm{x}) .\end{array}$

ZK PROTOCOL: proof of zero-knowledge

World I

1. The verifier V^{*} is told x , uses randomness to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.

ZK PROTOCOL: proof of zero-knowledge

World I

1. The verifier V^{*} is told x , uses randomness to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.
2. Independently, P uniformly at random splits up w into n shares, and computes the Views for i and j .

ZK PROTOCOL: proof of zero-knowledge

World I

1. The verifier V^{*} is told x, uses randomness to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.
2. Independently, P uniformly at random splits up w into n shares, and computes the Views for i and j .
3. View ${ }_{\mathrm{i}}$ and View $_{\mathrm{j}}$ are revealed to \mathbf{V}^{*}.

ZK PROTOCOL: proof of zero-knowledge

World I

1. The verifier V^{*} is told x, uses randomness to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.
2. Independently, P uniformly at random splits up w into n shares, and computes the Views for i and j .
3. View ${ }_{\mathrm{i}}$ and View ${ }_{\mathrm{j}}$ are revealed to \mathbf{V}^{*}.

World II

1. M^{*} uses the same randomness that V^{*} uses to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.

ZK PROTOCOL: proof of zero-knowledge

World I

1. The verifier V^{*} is told x, uses randomness to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.
2. Independently, P uniformly at random splits up w into n shares, and computes the Views for i and j .
3. View ${ }_{\mathrm{i}}$ and View $_{\mathrm{j}}$ are revealed to \mathbf{V}^{*}.

World II

1. M^{*} uses the same randomness that V^{*} uses to choose $1 \leq \mathrm{i}<\mathrm{j} \leq n$.
2. $\quad M^{*}$ uniformly at random selects w_{i} and w_{j} and runs:
$\operatorname{SIM}\left(T=\{i, j\}, x,\left(w_{i}, w_{j}\right), 1\right)$ to generate simulated views for i, j.

ZK PROTOCOL

$\begin{array}{ll}\text { Theorem. } & \text { Let } \Pi_{f} \text { be a correct and computational 2-private MPC protocol. } \\ & \text { Then } \Pi_{R} \text { from the previous slide is a zero-knowledge proof } \\ & \text { protocol for the NP-relation } R \text { with soundness error } \varepsilon \leq 1-n^{-2} .\end{array}$ Proof. $\begin{aligned} & \text { COMPLETENESS. Follows from correctness of } \Pi_{f} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { SOUNDNESS. Follows from "Hat Lemma". }\end{aligned}$

ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

Issue 1. Soundness error $1-\mathrm{n}^{-2}$ is not great.

ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

Issue 1. Soundness error $1-\mathrm{n}^{-2}$ is not great.
Potential solution? Repetitions of protocol.

ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

Issue 1. Soundness error $1-\mathrm{n}^{-2}$ is not great.
Potential solution? Repetitions of protocol.

- Do multiple rounds reveal information?
- Can we overcome inefficiency of multiple rounds?

ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

Issue 1. Soundness error $1-\mathrm{n}^{-2}$ is not great.
Potential solution? Repetitions of protocol.

- Do multiple rounds reveal information?
- Can we overcome inefficiency of multiple rounds?

Issue 2. Assumption of ideal primitives for MPC and COM.

ZK PROTOCOL v. 2

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} as before. Sequential repetitions kn^{2} times results in soundness error $\varepsilon \leq 2^{-k}$.

ZK PROTOCOL v. 2

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} as before. Sequential repetitions kn^{2} times results in soundness error $\varepsilon \leq 2^{-k}$.

Proof. COMPLETENESS + SOUNDNESS. Follows from single round.

ZK PROTOCOL v. 2

Theorem. Let Π_{f} be a correct and computational 2-private MPC protocol. Then Π_{R} as before. Sequential repetitions kn^{2} times results in soundness error $\varepsilon \leq 2^{-k}$.

Proof. COMPLETENESS + SOUNDNESS. Follows from single round. ZERO-KNOWLEDGE. Need indistinguishability from repetitions.

ZK PROTOCOL v. 2

Definition. Two probability ensembles $\left\{A_{x}\right\}_{x \in x}$ and $\left\{B_{x}\right\}_{x \in x}$ are indistinguishable by polynomial-time sampling if for any non-uniform efficient distinguisher D and $m=\mathrm{p}(|x|)$,

$$
\operatorname{Pr}\left[D\left(A_{x}^{(1)}, \ldots, A_{x}^{(m)}\right)=1\right]-\operatorname{Pr}\left[D\left(B_{x}^{(1)}, \ldots, B_{x}^{(m)}\right)=1\right] \mid<\varepsilon(|x|)
$$

where $\varepsilon(\cdot)$ is a negligible function and p is a polynomial.

HYBRID TECHNIQUE

Theorem. Two probability ensembles $\left\{\mathrm{A}_{\mathrm{x}}\right\}$ and $\left\{\mathrm{B}_{\mathrm{x}}\right\}$ are computationally indistinguishable if and only if they are indistinguishable by polynomial-time sampling.

HYBRID TECHNIQUE

Theorem. | Two probability ensembles $\left\{A_{x}\right\}$ and $\left\{B_{x}\right\}$ are computationally |
| :--- |
| indistinguishable if and only if they are indistinguishable by |
| polynomial-time sampling. |

Proof	If an algorithm D^{\prime} can distinguish between two sequences:
(sketch).	A^{1}, \ldots, A^{m} and B^{1}, \ldots, B^{m},

HYBRID TECHNIQUE

Theorem. | Two probability ensembles $\left\{A_{x}\right\}$ and $\left\{B_{x}\right\}$ are computationally |
| :--- |
| indistinguishable if and only if they are indistinguishable by |
| polynomial-time sampling. |

| Proof |
| :--- | :--- |
| (sketch). If an algorithm D^{\prime} can distinguish between two sequences: |
| $\quad A^{1}, \ldots, A^{m}$ and B^{1}, \ldots, B^{m}, |

then consider the chain of hybrid sequences:

HYBRID TECHNIQUE

```
Theorem. Two probability ensembles \(\left\{\mathrm{A}_{\mathrm{x}}\right\}\) and \(\left\{\mathrm{B}_{\mathrm{x}}\right\}\) are computationally
        indistinguishable if and only if they are indistinguishable by
    polynomial-time sampling.
Proof If an algorithm \(D^{\prime}\) can distinguish between two sequences:
(sketch).
```

```
A},\ldots,\mp@subsup{A}{}{m}\mathrm{ and }\mp@subsup{B}{}{1},\ldots,\mp@subsup{B}{}{m}
```

A},···,\mp@subsup{A}{}{m}\mathrm{ and }\mp@subsup{B}{}{1},···,\mp@subsup{B}{}{m}
then consider the chain of hybrid sequences:
1. $A^{1}, A^{2}, \ldots, A^{m-1}, A^{m}$

```

\section*{HYBRID TECHNIQUE}
Theorem. \begin{tabular}{l} 
Two probability ensembles \(\left\{A_{x}\right\}\) and \(\left\{B_{x}\right\}\) are computationally \\
indistinguishable if and only if they are indistinguishable by \\
polynomial-time sampling.
\end{tabular}
\begin{tabular}{l} 
Proof \\
(sketch). \\
\(\qquad\)\begin{tabular}{l} 
If an algorithm \(D^{\prime}\) can distinguish between two sequences: \\
\\
then consider the chain of hybrid sequences: \\
1. \(A^{1}, A^{2}, \ldots, A^{m-1}, A^{m}\)
\end{tabular} \\
2. \(A^{1}, A^{2}, \ldots, A^{m-1}, B^{m}\)
\end{tabular}

\section*{HYBRID TECHNIQUE}
Theorem. \begin{tabular}{l} 
Two probability ensembles \(\left\{A_{x}\right\}\) and \(\left\{B_{x}\right\}\) are computationally \\
indistinguishable if and only if they are indistinguishable by \\
polynomial-time sampling.
\end{tabular}
\begin{tabular}{l} 
Proof \\
(sketch). \\
\(\qquad\)\begin{tabular}{l} 
If an algorithm \(D^{\prime}\) can distinguish between two sequences:
\end{tabular} \\
then consider the chain of hybrid sequences: \\
1. \(A^{1}, A^{2}, \ldots, A^{m-1}, A^{m}\) \\
2. \(A^{1}, A^{2}, \ldots, A^{m-1}, B^{m}\) \\
3. \(A^{1}, A^{2}, \ldots, B^{m-1}, B^{m}\)
\end{tabular}

\section*{HYBRID TECHNIQUE}
Theorem. \begin{tabular}{l} 
Two probability ensembles \(\left\{A_{x}\right\}\) and \(\left\{B_{x}\right\}\) are computationally \\
indistinguishable if and only if they are indistinguishable by \\
polynomial-time sampling. \\
Proof \\
(sketch). \\
If an algorithm \(D^{\prime}\) can distinguish between two sequences: \\
\(A^{1}, \ldots, A^{m}\) and \(B^{1}, \ldots, B^{m}\), \\
then consider the chain of hybrid sequences: \\
1. \(A^{1}, A^{2}, \ldots, A^{m-1}, A^{m}\) \\
2. \(A^{1}, A^{2}, \ldots, A^{m-1}, B^{m}\) \\
3. \(A^{1}, A^{2}, \ldots, B^{m-1}, B^{m}\) \\
\(\vdots\) \\
4. \(A^{1}, B^{2}, \ldots, B^{m-1}, B^{m}\) \\
5. \(B^{1}, B^{2}, \ldots, B^{m-1}, B^{m}\)
\end{tabular}

\section*{HYBRID TECHNIQUE}

\section*{Theorem. Two probability ensembles \(\left\{\mathrm{A}_{\mathrm{x}}\right\}\) and \(\left\{\mathrm{B}_{\mathrm{x}}\right\}\) are computationally indistinguishable if and only if they are indistinguishable by polynomial-time sampling.}

Question. What is the probability that D' distinguishes between neighboring hybrid sequences?

\section*{HYBRID TECHNIQUE}
\begin{tabular}{ll} 
Theorem. & \begin{tabular}{l} 
Two probability ensembles \(\left\{A_{x}\right\}\) and \(\left\{B_{x}\right\}\) are computationally \\
indistinguishable if and only if they are indistinguishable by \\
polynomial-time sampling.
\end{tabular} \\
Question. \(\quad\)\begin{tabular}{l} 
What is the probability that \(D^{\prime}\) distinguishes between \\
neighboring hybrid sequences?
\end{tabular} \\
Idea. \(\quad\)\begin{tabular}{l} 
The sum of the probability that \(D^{\prime}\) distinguishes neighboring \\
hybrid sequences telescopes to the probability that \(D^{\prime}\) \\
distinguishes original two sequences.
\end{tabular}
\end{tabular}

\section*{HYBRID TECHNIQUE}
Theorem. Two probability ensembles \(\left\{\mathrm{A}_{\mathrm{x}}\right\}\) and \(\left\{\mathrm{B}_{\mathrm{x}}\right\}\) are computationally indistinguishable if and only if they are indistinguishable by polynomial-time sampling.
Question. What is the probability that D' distinguishes between neighboring hybrid sequences?
Idea. The sum of the probability that \(D^{\prime}\) distinguishes neighboring hybrid sequences telescopes to the probability that \(D^{\prime}\) distinguishes original two sequences.
Ergo. \(\quad D^{\prime}\) can distinguish one of these \(m\) neighboring probabilities with probability greater than \(\varepsilon(|x|) / m\).
Use to construct single distinguisher!

\section*{REMARKS ON EXTENSIONS}

If you're interested, the rest of paper goes into:
1. More efficient technique using \(t\)-robustness assumptions (allows verifier to open more than two safes).
2. Incorporation of imperfect MPC and commitment protocols into security analysis.
3. More on efficiency and coin-flipping.

\section*{ACKNOWLEDGMENTS}

This lecture by Geelon So follows the paper [IKOSO7], and was given for the course COMS 6998
Privacy-Preserving Technologies, by Prof. Jeannette Wing. It was part of a longer lecture jointly presented along with Alex Nicita and Abhi Shah, with guest speaker Eran Tromer.

\section*{REFERENCES}
[IKOS07] Ishai, Yuval, et al. "Zero-knowledge from secure multiparty computation." Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. ACM, 2007.
[Gold07] Goldreich, Oded. Foundations of cryptography: volume 1, basic tools. Cambridge university press, 2007.```


[^0]:    **by negligible, we mean that for all c>0, asymptotically, $\varepsilon(\mathrm{n})<\mathrm{o}\left(n^{-c}\right)$.

