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TOY SCENARIO

Alice: I know how to make hats.

Bob: Prove it!

Alice: I’m not showing you; you might steal my design.



TOY SCENARIO: ZKP PROTOCOL

Step 1: Alice cuts up her hat (read: proof) into pieces.
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Step 2: Alice stores each piece into a different safe 
and then gives the safes to Bob.
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Step 3: Bob asks Alice to open two of the safes.

He checks to see if the pieces fit together 
(read: the views of the hat are consistent).
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Denote the hat pieces by H1, ⋯ , Hn. We say that a collection of hat pieces 
are consistent if they fit together and are clearly from the same hat.
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Lemma. H1, ⋯ , Hn are consistent if and only if Hi and Hj are pairwise 
consistent for each 1 ≤ i < j ≤ n.

Denote the hat pieces by H1, ⋯ , Hn. We say that a collection of hat pieces 
are consistent if they fit together and are clearly from the same hat.
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Corollary. If H1, ⋯ , Hn are not consistent, then there exists at least one pair 
of Hi and Hj that are not consistent with each other.
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Question. If Alice is lying and her hat pieces are not consistent, what is the 
probability that Bob discovers her deceit?

Answer.
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TOY SCENARIO: LIMITATION
Bob still learns something about Alice’s hat designs from her cut-up pieces.

Question. Is there a way to split up her proof so that no two shares can be 
combined to reveal any information?

Answer. Use secure multi-party computation!
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PRELIMINARIES

Definition. An NP-relation R(x,w) is an efficiently decidable binary relation 
that is polynomially bounded (i.e. |w| ≤ p(|x|) where p polynomial).

Examples. Let x = (V,E) be a graph
I. w is a Hamiltonian path in x
II. w is a 3-coloring of x

Let x ∈ (Z/nZ)× be relatively prime to n
III. w is a square root of x (i.e. w2 ≅ x mod n)

Remark. Any NP-relation R defines an NP-language:
L = { x : ∃w, R(x,w) = 1 }.



PRELIMINARIES: GOAL

Alice: x is in L.

Bob: Prove it!

Alice: I don’t want to share w with you.



HIGH-LEVEL OVERVIEW

Assume that there is an SMPC algorithm f that computes:
f( x, w1, ⋯ , wn ) ≡ R( x, w1 ⊕ ⋯ ⊕ wn )   
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Figure. Each party has a secret share of w, where 
w ≡ w1 ⊕ ⋯ ⊕ wn

Together, they jointly and privately verify R(x, w).

Assume that there is an SMPC algorithm f that computes:
f( x, w1, ⋯ , wn ) ≡ R( x, w1 ⊕ ⋯ ⊕ wn )   
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that w is a witness to x ∈ L.
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Remark. After running the protocol, each party will have a 
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with the randomness it used.
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HIGH-LEVEL OVERVIEW
Step 1: Alice simulates the SMPC protocol that verifies 

that w is a witness to x ∈ L.

Remark. After running the protocol, each party will have a 
view of the messages it received and sent along 
with the randomness it used.

These views will act as cut-up pieces of the proof 
that x ∈ L.

w1

w2
wn

wn - 1

x



Recall that a commitment scheme, COM, is a protocol that allows one to 
commit a message while hiding the message from others. Later, one is able 
to reveal the original message.

HIGH-LEVEL OVERVIEW

Figure. A commitment protocol is analogous to 
sending a message locked in a safe. Later in time, 
the sender can open the safe to reveal the 
committed message.



HIGH-LEVEL OVERVIEW
Step 2: Alice commits each of the views using a commit- 

ment scheme, sending the commits to Bob.
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HIGH-LEVEL OVERVIEW
Step 3: Bob chooses two commitments for Alice to decommit, 

revealing two views of the MPC protocol.

Decision. If the views are inconsistent, Bob rejects. 
Otherwise, Bob accepts.
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Remark. The soundness error (i.e. probability that Bob accepts 

a invalid proof) at this point is as before:



HIGH-LEVEL OVERVIEW
Remark. The soundness error (i.e. probability that Bob accepts 

a invalid proof) at this point is as before:

We could make this probability negligibly small (say, 
w.p. 2-k ) through repetitions (say, kn2 times).



HIGH-LEVEL OVERVIEW: UPSHOT

Main Result. We can build ZKP protocols given black-box 
access to MPC protocols.
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FORMALITIES

Definition 
(informal).

A zero-knowledge proof (ZKP) is a protocol (P,V)  where for each 
x ∈ L, the prover tells the verifier essentially nothing but x ∈ L.

Remark. For a given input x, the prover and verifier will exchange 
messages according to some underlying probability distribution, 
say Ax, that depends on x.

We call a collection of distributions { Ax }x ∈ X  a probability 
ensemble indexed by X.

Let P be the prover and V be the verifier. Let L be an NP-language.



FORMALITIES

Definition. Two probability ensembles { Ax }x ∈ X and { Bx }x ∈ X are 
computationally indistinguishable if for any non-uniform 
efficient distinguisher D,*

where ε( • ) is a negligible function.**

*by efficient, we mean probabilistic polytime (PPT) algorithm, and by 
non-uniform, we mean that the algorithm can depend on the length of x.

**by negligible, we mean that for all c > 0, asymptotically, ε(n) < o(n-c).



FORMALITIES

Definition. A protocol (P, V) is a zero-knowledge proof protocol for the NP 
relation R (with corresponding language L), if it satisfies:

I. completeness: if x ∈ L, and if both players follow the 
protocol, the verifier always accepts

II. soundness: for every malicious and computationally 
unbounded prover P*, if x ∉ L, the verifier accepts with 
negligible probability ε(|x|)

III. zero-knowledge: for any malicious PPT verifier V*, there is 
a PPT simulator M*, such that the view of V* is computa- 
tionally indistinguishable from the output distribution M*(x).
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indistinguishable from the output distribution M*(x)?
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encapsulated in a string:
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that V* saw through the interaction.
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FORMALITIES: ZERO-KNOWLEDGE

Remark. What does it mean for the view of V* to be computationally 
indistinguishable from the output distribution M*(x)?

The verifier V* is told x, and then interacts 
with Alice. All new information is 
encapsulated in a string:

ViewV*(x,w)
the collection of messages and random bits 
that V* saw through the interaction.

In the simulation world, a random string:
M*(x)

is generated from the input x. There is
no access to Alice.

World I World II
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Remark. What does it mean for the view of V* to be computationally 
indistinguishable from the output distribution M*(x)?

This means that it is not possible to computationally determine 
which world we’re actually in:

for some negligible function δ( • ).
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Remark. What does it mean for the view of V* to be computationally 
indistinguishable from the output distribution M*(x)?

This means that it is not possible to computationally determine 
which world we’re actually in:

for some negligible function δ( • ).

It follows that Bob will not learn anything about w that he can 
efficiently recover even after interacting with Alice.



FORMALITIES: MPC PRIMITIVES

Definition 
(informal).

An n-party MPC protocol Πf computes f with t-privacy if no 
matter how a subset of t corrupted players collude, they can gain 
no additional information beyond their shared secrets.



FORMALITIES: MPC PRIMITIVES

Definition 
(informal).

An n-party MPC protocol Πf computes f with t-privacy if no 
matter how a subset of t corrupted players collude, they can gain 
no additional information beyond their shared secrets.

Remark. We can have different versions of t-privacy:
- perfect t-privacy: same distribution
- statistical t-privacy: statistical indistinguishability
- computational t-privacy: computational indistinguishability



FORMALITIES: MPC PRIMITIVES

Definition. Let 1 ≤ t < n. An MPC protocol Πf realizes f with perfect t-privacy 
if there is a PPT simulator SIM such that for any input x, w1, ⋯ , wn, 
and for any set of corrupted players T ⊂ [n] of size t, the joint 
view of those T players is distributed identically to:

SIM(T, x, (wi)i∈T, fT(x, w1, ⋯ , wn)).

Similar definitions for statistical t-privacy and computational 
t-privacy, with respect to a security parameter k.
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Theorem. Let Πf be a correct and computational 2-private MPC protocol. 
Then ΠR from the previous slide is a zero-knowledge proof 
protocol for the NP-relation R with soundness error ε ≤ 1 - n-2.

Proof. COMPLETENESS. Follows from correctness of Πf.
SOUNDNESS. Follows from “Hat Lemma”.
ZERO-KNOWLEDGE. Construct the following simulation M*(x).
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randomness to choose 1 ≤ i < j ≤ n.
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ZK PROTOCOL: proof of zero-knowledge

1. The verifier V* is told x, uses 
randomness to choose 1 ≤ i < j ≤ n.

2. Independently, P uniformly at 
random splits up w into n shares, and 
computes the Views for i and j.

3. Viewi and Viewj are revealed to V*.

World I World II

1. M* uses the same randomness that 
V* uses to choose 1 ≤ i < j ≤ n.

2. M* uniformly at random selects wi 
and wj and runs:

SIM(T={i,j}, x, (wi, wj), 1)
to generate simulated views for i, j.



ZK PROTOCOL

Theorem. Let Πf be a correct and computational 2-private MPC protocol. 
Then ΠR from the previous slide is a zero-knowledge proof 
protocol for the NP-relation R with soundness error ε ≤ 1 - n-2.

Proof. COMPLETENESS. Follows from correctness of Πf.
SOUNDNESS. Follows from “Hat Lemma”.
ZERO-KNOWLEDGE. Follows from 2-privacy of SIM.                    ∎
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ZK PROTOCOL: EXTENSIONS

Question. What are issues with the current description of the ZK protocol?

Issue 1. Soundness error 1 - n-2 is not great.
Potential solution? Repetitions of protocol.

- Do multiple rounds reveal information?
- Can we overcome inefficiency of multiple rounds?

Issue 2. Assumption of ideal primitives for MPC and COM.
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Theorem. Let Πf be a correct and computational 2-private MPC protocol. 
Then ΠR as before. Sequential repetitions kn2 times results in 
soundness error ε ≤ 2-k.
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ZK PROTOCOL v.2

Theorem. Let Πf be a correct and computational 2-private MPC protocol. 
Then ΠR as before. Sequential repetitions kn2 times results in 
soundness error ε ≤ 2-k.

Proof. COMPLETENESS + SOUNDNESS. Follows from single round.
ZERO-KNOWLEDGE. Need indistinguishability from repetitions.



ZK PROTOCOL v.2

Definition. Two probability ensembles { Ax }x ∈ X and { Bx }x ∈ X are 
indistinguishable by polynomial-time sampling if for any 
non-uniform efficient distinguisher D and m = p(|x|),

where ε( • ) is a negligible function and p is a polynomial.
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Theorem. Two probability ensembles { Ax } and { Bx } are computationally 
indistinguishable if and only if they are indistinguishable by 
polynomial-time sampling.

Proof 
(sketch).

If an algorithm D’ can distinguish between two sequences:
A1, … , Am   and    B1, … , Bm,

then consider the chain of hybrid sequences:
1. A1, A2, … , Am-1, Am

2. A1, A2, … , Am-1, Bm

3. A1, A2, … , Bm-1, Bm

                  ⋮

4. A1, B2, … , Bm-1, Bm

5. B1, B2, … , Bm-1, Bm
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HYBRID TECHNIQUE

Theorem. Two probability ensembles { Ax } and { Bx } are computationally 
indistinguishable if and only if they are indistinguishable by 
polynomial-time sampling.

Question. What is the probability that D’ distinguishes between 
neighboring hybrid sequences?

Idea. The sum of the probability that D’ distinguishes neighboring 
hybrid sequences telescopes to the probability that D’ 
distinguishes original two sequences.

Ergo. D’ can distinguish one of these m neighboring probabilities with 
probability greater than ε(|x|)/m. 
Use to construct single distinguisher!                                             ∎



REMARKS ON EXTENSIONS

If you’re interested, the rest of paper goes into:

1. More efficient technique using t-robustness assumptions (allows 
verifier to open more than two safes).

2. Incorporation of imperfect MPC and commitment protocols into 
security analysis. 

3. More on efficiency and coin-flipping.



ACKNOWLEDGMENTS

This lecture by Geelon So follows the paper [IKOS07], and was given for the course COMS 6998 
Privacy-Preserving Technologies, by Prof. Jeannette Wing. It was part of a longer lecture jointly presented 
along with Alex Nicita and Abhi Shah, with guest speaker Eran Tromer.



REFERENCES

[IKOS07] Ishai, Yuval, et al. "Zero-knowledge from secure multiparty computation." Proceedings 
of the thirty-ninth annual ACM symposium on Theory of computing. ACM, 2007.

[Gold07] Goldreich, Oded. Foundations of cryptography: volume 1, basic tools. Cambridge 
university press, 2007.


