Determinants via Exterior Algebra

In the following, V will always be a finite-dimensional vector space over \mathbb{R}.

1 Review of Exterior Algebras

We can define the exterior/wedge product on V as the universal alternating bilinear map on $V \times V$. This will let us analyze general alternating bilinear (and later multilinear) maps h through linear maps instead, denoted t below. Then, we'll focus on perhaps the most important alternating multilinear maps: the determinant.

Definition 1. The exterior product $\wedge: V \times V \rightarrow V \wedge V$ is a universal alternating bilinear map, where $\left(v_{1}, v_{2}\right) \mapsto v_{1} \wedge v_{2}$. That is, if $h: V \times V \rightarrow W$ is any alternating bilinear map, then there is a unique linear map $t: V \wedge V \rightarrow W$ such that the following diagram commutes:

Remark 2 (On universal properties; may be skipped). It may seem strange that we never specified what $V \wedge V$ was nor what \wedge really did. Indeed, what we've really defined is the universal property for alternating bilinear maps rather than the exterior product (then we set the exterior product as the canonical universal alternating bilinear map).

Let's give the previous definition more formally: we say that a map $u: V \times V \rightarrow U$ is a universal alternating bilinear map (where U is a vector space) if:
(i) u itself is an alternating bilinear map, and
(ii) for any alternating bilinear maps $h: V \times V \rightarrow W$, there is a unique linear maps $t: U \rightarrow W$ such that $h=t \circ u$.

This second condition states that the following diagram commutes:

Furthermore, we call the pair (u, U) a universal element with respect to this property. Notice that we say (u, U) is a universal element because multiple maps could satisfy this universal property. However, it turns out that all universal elements are uniquely isomorphic. Here's why:

Take (u, U) and $\left(u^{\prime}, U^{\prime}\right)$ two universal elements. As u^{\prime} is alternating bilinear, by universality of u, there is a unique linear map $t: U \rightarrow U^{\prime}$ such that $u^{\prime}=t \circ u$. By the same argument, there is also
a unique linear map $t^{\prime}: U^{\prime} \rightarrow U$ such that $u=t^{\prime} \circ u^{\prime}$. In particular, $t: U \rightarrow U^{\prime}$ is an isomorphism (and unique with respect to this property).

Now, because all universal elements are uniquely isomorphic, we can define $V \wedge V$ to be the canonical universal element (so rename the vector space U by $V \wedge V$), and instead of writing $u\left(v_{1}, v_{2}\right)$, we'll write $v_{1} \wedge v_{2}$. Finally, note that it might very well be the case that no universal elements exist (in which case all that we've stated so far is trivially true). Rest assured that a construction of a universal element is possible (briefly, quotient $V \otimes V$ with the subspace generated by $\{v \otimes v: v \in V\}$); however, this construction is perhaps more formal than illuminating.

We can define the universal alternating trilinear map in similar fashion. Or, more generally, the universal alternating p-linear map, which gives rise to the vector space $\Lambda^{p}(V)=V \wedge \cdots \wedge V$ (just V wedged with itself p times). Thus, $\Lambda^{2}(V)=V \wedge V$. We'll identify $\Lambda^{1}(V):=V$ and $\Lambda^{0}(V):=\mathbb{R}$. We call the sequence:

$$
\Lambda(V):=\left(\Lambda^{0}(V), \Lambda^{1}(V), \Lambda^{2}(V), \cdots\right)
$$

the exterior algebra of V. Here are some properties of $\Lambda(V)$:

- $v_{1} \wedge v_{2}=-v_{2} \wedge v_{1}$, which implies $v \wedge v=0$. More generally, if $\sigma \in \Sigma_{p}$ is a permutation, then:

$$
\begin{equation*}
v_{1} \wedge \cdots \wedge v_{p}=(-1)^{\operatorname{sgn}(\sigma)} v_{\sigma_{1}} \wedge \cdots \wedge v_{\sigma_{p}} \tag{1}
\end{equation*}
$$

and if $v_{i}=v_{j}$ for any $i \neq j$, then the product is equal to 0 .

- elements of $\Lambda^{p}(V)$ are called p-vectors, spanned by elements of the form $v_{1} \wedge \cdots \wedge v_{p}$ where $v_{i} \in V$. Such elements $v_{1} \wedge \cdots \wedge v_{n}$ are called decomposable. Thus, general elements of $\Lambda^{p}(V)$ are finite sums of decomposable p-vectors. Not all p-vectors are decomposable.
- if $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V, then $\Lambda^{p}(V)$ is a $\binom{n}{p}$-dimensional vector space with basis $e_{k_{1}} \wedge \cdots \wedge e_{k_{p}}$ where $k_{1}<\cdots<k_{p}$. Abusing notation, we denote this basis element by $e_{\mathbf{k}}$, where $\mathbf{k} \in\binom{n}{p}$ is a choice of p indexes from $[n]$. If $p>n$, then $\Lambda^{p}(V)=0$.
- If $T: V \rightarrow V$ is a linear map, then consider the alternating p-linear map $\tau: V^{p} \rightarrow \Lambda^{p}(V)$, by

$$
\left(v_{1}, \ldots, v_{p}\right) \stackrel{\tau}{\mapsto} T v_{1} \wedge \cdots \wedge T v_{p} .
$$

By universality, there is a unique linear map $t: \Lambda^{p}(V) \rightarrow \Lambda^{p}(V)$ such that $\tau=t \circ \wedge^{p}$. Because this map is uniquely induced by T, let's denote it $\Lambda^{p}(T)$.

2 Determinants

Let's consider this last point for $p=n$. Notice that $\Lambda^{n}(V)$ is a 1-dimensional vector space, with basis $e_{1} \wedge \cdots \wedge e_{n}$. Given a map $T: V \rightarrow V$ such that $T\left(e_{i}\right)=v_{i}$, the induced map $\Lambda^{n}(T)$ is:

$$
e_{1} \wedge \cdots \wedge e_{n} \stackrel{\Lambda^{n}(T)}{\longmapsto} v_{1} \wedge \cdots \wedge v_{n}
$$

where $v_{1} \wedge \cdots \wedge v_{n}$ expanded in the basis is just $\alpha e_{1} \wedge \cdots \wedge e_{n}$ for some $\alpha \in \mathbb{R}$. So we can identify $\Lambda^{n}(T)$ with the constant α.

We should interpret the n-vector $e_{1} \wedge \cdots \wedge e_{n}$ as a unit of n-volume element in V. Then, $\Lambda^{n}(T)$ tells us how much this volume element is scaled by the map T; the value α is the familiar quantity $\operatorname{det}(T)$. We can verify this explicitly:

Proposition 3. If $T: V \rightarrow V$ is a linear transformation of an n-dimensional vector space, then

$$
T u_{1} \wedge \cdots \wedge T u_{n}=\operatorname{det}(T) u_{1} \wedge \cdots \wedge u_{n}
$$

for all $u_{1}, \ldots, u_{n} \in V$.
Proof. It suffices to show this for a basis $\mathbf{e}=\left\{e_{1}, \ldots, e_{n}\right\}$, in which case, we can consider the matrix of T rel \mathbf{e}. Namely, $T\left(e_{j}\right)=\sum e_{i} T_{i j}$. Then,

$$
T e_{1} \wedge \cdots \wedge T e_{n}=\left(\sum_{i} e_{i} T_{i 1}\right) \wedge \cdots \wedge\left(\sum_{i} e_{i} T_{i n}\right) .
$$

Expanding out by multilinearity yields n^{n} terms, but any terms with a repeated index is 0 , so we are left with a sum over all permutations $\sigma \in \Sigma_{n}$. From Equation 1, we obtain:

$$
T e_{1} \wedge \cdots \wedge T e_{n}=\left(\sum_{\sigma \in \Sigma_{n}}(-1)^{\operatorname{sgn}(\sigma)} T_{\sigma_{1} 1} \cdots T_{\sigma_{n} n}\right) e_{1} \wedge \cdots \wedge e_{n}
$$

The term in the parenthesis is the usual expansion of the determinant of T.
Let's write $v_{i}=T e_{i}$. We can give an interpretation of $v_{1} \wedge \cdots \wedge v_{n}$ that is essentially agnostic to T : the magnitude of $v_{1} \wedge \cdots \wedge v_{n}$ is the volume of the parallelpiped spanned by the vectors v_{1}, \ldots, v_{n} in V. Of course, this statement is technically not well-formed, because $\Lambda^{n}(V)$ as a vector space has no intrinsic measure of length (and neither does V). But once V is an inner product space (i.e. once we've fixed a basis), then $\Lambda^{n}(V)$ is also made into an inner product space. Naturally, the inner product is defined so that:

$$
\left|e_{1} \wedge \cdots \wedge e_{n}\right|^{2}=\left\langle e_{1} \wedge \cdots \wedge e_{n}, e_{1} \wedge \cdots \wedge e_{n}\right\rangle=1
$$

This analysis extends to $\Lambda^{p}(V)$ for all p. That is, $\Lambda^{p}(V)$ is also made into an inner product space. Decomposable p-vectors $v_{1} \wedge \cdots \wedge v_{p}$ encoding information about (i) the subspace spanned by the vectors v_{1}, \ldots, v_{p}-encapsulated in the direction of the p-vector itself, and (ii) the p-dimensional volume of the parallelpiped spanned by those vectors, where:

$$
\operatorname{vol}\left(v_{1}, \ldots, v_{p}\right)=\left|v_{1} \wedge \cdots \wedge v_{p}\right| .
$$

With this interpretation, Cauchy-Binet's formula becomes very simple. Recall that Cauchy-Binet states: given the p vectors $v_{1}, \ldots, v_{p} \in V$. Let X be the matrix where the i th column is v_{i}, so:

$$
X=\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{p} \\
\mid & & \mid
\end{array}\right] .
$$

Cauchy-Binet states that:

$$
\operatorname{det}\left(X^{T} X\right)=\sum_{\mathbf{k} \in\binom{n}{p}} \operatorname{det}\left(X_{\mathbf{k}}^{T} X_{\mathbf{k}}\right),
$$

where $X_{\mathbf{k}}$ is the matrix minor by taking all columns and the k_{1}, \ldots, k_{p} rows of X.
This formula is more clearly seen as a particular Pythagorean theorem, recalling that $\operatorname{det}\left(X^{T} X\right)$ gives the squared p-dimensional volume of the parallelpiped spanned by its columns. That is, $\operatorname{det}\left(X^{T} X\right)=\left|v_{1} \wedge \cdots \wedge v_{p}\right|^{2}$.

We derive Cauchy-Binet from the following lemma, expanding $v_{1} \wedge \cdots \wedge v_{p}$ in the basis of $\Lambda^{p}(V)$:

Lemma 4 (Cauchy-Binet). Let V be an n-dimensional inner product space with orthonormal basis \mathbf{e}, while \mathbf{v} is a list of p elements of V, and X the matrix rel \mathbf{e} of this list, in the sense that $v_{i}=\sum_{j} X_{i j} e_{j}$ for $i \in[p]$. Then,

$$
v_{1} \wedge \cdots \wedge v_{p}=\sum_{\mathbf{k} \in\binom{n}{p}} \operatorname{det}\left(X_{\mathbf{k}}\right) e_{\mathbf{k}},
$$

where $X_{\mathbf{k}}$ is the matrix minor of X by taking all columns and the k_{1}, \ldots, k_{p} rows.
Then, the Cauchy-Binet formula falls out from the Pythagorean theorem, and the fact that $\operatorname{det}\left(X_{\mathbf{k}}\right)^{2}=\operatorname{det}\left(X_{\mathbf{k}}^{T} X_{\mathbf{k}}\right)$.

Proof. We write the left-hand side out as:

$$
v_{1} \wedge \cdots \wedge v_{p}=\left(\sum_{i \in[n]} e_{i} X_{i 1}\right) \wedge \cdots \wedge\left(\sum_{i \in[n]} e_{i} X_{i p}\right),
$$

where we may expand out via multilinearity; for each basis element $e_{\mathbf{k}}$ for $\mathbf{k} \in\binom{n}{p}$, we have the contribution:

$$
\left(\sum_{i \in \mathbf{k}} e_{i} X_{i 1}\right) \wedge \cdots \wedge\left(\sum_{i \in \mathbf{k}} e_{i} X_{i n}\right)=\operatorname{det}\left(X_{\mathbf{k}}\right) e_{\mathbf{k}},
$$

from Proposition 3. Summing over all $\mathbf{k} \in\binom{n}{p}$ yields the desired formula.
Corollary 5. Let V, e, \mathbf{v} and X as before. Let $T: V \rightarrow V$ be any linear transformation and identify T with its matrix rel \mathbf{e}. Then,

$$
T v_{1} \wedge \cdots \wedge T v_{p}=\sum_{\mathbf{h} \in\binom{n}{p}} \sum_{\mathbf{k} \in\binom{n}{p}} e_{\mathbf{h}} \operatorname{det}\left(T_{\mathbf{h} \times \mathbf{k}}\right) \operatorname{det}\left(X_{\mathbf{k}}\right),
$$

where $T_{\mathbf{h} \times \mathbf{k}}$ is the matrix minor of T with rows h_{1}, \ldots, h_{p} and columns k_{1}, \ldots, k_{p}.
Proof. We just apply $\Lambda^{p}(T)$ to $v_{1} \wedge \cdots \wedge v_{p}$. Because $\Lambda^{p}(T)$ is linear, Lemma 4 gives:

$$
\Lambda^{p}(T)\left(v_{1} \wedge \cdots \wedge v_{p}\right)=T v_{1} \wedge \cdots \wedge T v_{p}=\sum_{\mathbf{k} \in\binom{n}{p}} \operatorname{det}\left(X_{\mathbf{k}}\right) \cdot \Lambda^{p}(T) e_{\mathbf{k}},
$$

where $\Lambda^{p}(T) e_{\mathbf{k}}$ is, by Lemma 4 again:

$$
T e_{k_{1}} \wedge \cdots \wedge T e_{k_{p}}=\sum_{\mathbf{h} \in\binom{n}{p}} \operatorname{det}\left(T_{\mathbf{h} \times \mathbf{k}}\right) e_{\mathbf{h}} .
$$

Substituting this into the first equation gives the desired formula.
In particular, if T is diagonal, then $\operatorname{det}\left(T_{\mathbf{h} \times \mathbf{k}}\right)=0$ if $\mathbf{h} \neq \mathbf{k}$. Denote the diagonal matrix by $Q=\operatorname{diag}\left(q_{1}, \ldots, q_{n}\right)$. Then, the the formula simplifies to:

$$
Q v_{1} \wedge \cdots \wedge Q v_{p}=\sum_{\mathbf{k} \in\binom{n}{p}} \operatorname{det}\left(X_{\mathbf{k}}\right) \operatorname{det}\left(Q_{\mathbf{k} \times \mathbf{k}}\right) e_{\mathbf{k}}=\sum_{\mathbf{k} \in\binom{n}{p}} e_{\mathbf{k}} \operatorname{det}\left(X_{\mathbf{k}}\right) \prod_{i \in \mathbf{k}} q_{i} .
$$

It follows that:

$$
\begin{equation*}
\operatorname{det}\left(X^{T} Q^{2} X\right)=\sum_{\mathbf{k} \in\binom{n}{p}} \operatorname{det}\left(X_{\mathbf{k}}^{T} X_{\mathbf{k}}\right) \prod_{i \in \mathbf{k}} q_{i}^{2} . \tag{2}
\end{equation*}
$$

