
Determinants via Exterior Algebra

In the following, V will always be a finite-dimensional vector space over R.

1 Review of Exterior Algebras
We can define the exterior/wedge product on V as the universal alternating bilinear map on V × V .
This will let us analyze general alternating bilinear (and later multilinear) maps h through linear
maps instead, denoted t below. Then, we’ll focus on perhaps the most important alternating
multilinear maps: the determinant.

Definition 1. The exterior product ∧ : V × V → V ∧ V is a universal alternating bilinear map,
where (v1, v2) 7→ v1 ∧ v2. That is, if h : V × V →W is any alternating bilinear map, then there is a
unique linear map t : V ∧ V →W such that the following diagram commutes:

V × V V ∧ V

W

∧

h
t

Remark 2 (On universal properties; may be skipped). It may seem strange that we never specified
what V ∧ V was nor what ∧ really did. Indeed, what we’ve really defined is the universal property
for alternating bilinear maps rather than the exterior product (then we set the exterior product as
the canonical universal alternating bilinear map).

Let’s give the previous definition more formally: we say that a map u : V ×V → U is a universal
alternating bilinear map (where U is a vector space) if:

(i) u itself is an alternating bilinear map, and

(ii) for any alternating bilinear maps h : V × V →W , there is a unique linear maps t : U →W
such that h = t ◦ u.

This second condition states that the following diagram commutes:

V × V U

W

u

h
t

Furthermore, we call the pair (u, U) a universal element with respect to this property. Notice that
we say (u, U) is a universal element because multiple maps could satisfy this universal property.
However, it turns out that all universal elements are uniquely isomorphic. Here’s why:

Take (u, U) and (u′, U ′) two universal elements. As u′ is alternating bilinear, by universality of
u, there is a unique linear map t : U → U ′ such that u′ = t ◦ u. By the same argument, there is also
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a unique linear map t′ : U ′ → U such that u = t′ ◦ u′. In particular, t : U → U ′ is an isomorphism
(and unique with respect to this property).

Now, because all universal elements are uniquely isomorphic, we can define V ∧ V to be the
canonical universal element (so rename the vector space U by V ∧V ), and instead of writing u(v1, v2),
we’ll write v1 ∧ v2. Finally, note that it might very well be the case that no universal elements exist
(in which case all that we’ve stated so far is trivially true). Rest assured that a construction of a
universal element is possible (briefly, quotient V ⊗V with the subspace generated by {v⊗v : v ∈ V });
however, this construction is perhaps more formal than illuminating.

We can define the universal alternating trilinear map in similar fashion. Or, more generally, the
universal alternating p-linear map, which gives rise to the vector space Λp(V ) = V ∧ · · · ∧ V (just V
wedged with itself p times). Thus, Λ2(V ) = V ∧ V . We’ll identify Λ1(V ) := V and Λ0(V ) := R. We
call the sequence:

Λ(V ) := (Λ0(V ),Λ1(V ),Λ2(V ), · · · )

the exterior algebra of V . Here are some properties of Λ(V ):

• v1 ∧ v2 = −v2 ∧ v1, which implies v ∧ v = 0. More generally, if σ ∈ Σp is a permutation, then:

v1 ∧ · · · ∧ vp = (−1)sgn(σ)vσ1 ∧ · · · ∧ vσp , (1)

and if vi = vj for any i 6= j, then the product is equal to 0.

• elements of Λp(V ) are called p-vectors, spanned by elements of the form v1 ∧ · · · ∧ vp where
vi ∈ V . Such elements v1 ∧ · · · ∧ vn are called decomposable. Thus, general elements of Λp(V )
are finite sums of decomposable p-vectors. Not all p-vectors are decomposable.

• if {e1, . . . , en} is a basis of V , then Λp(V ) is a
(n
p

)
-dimensional vector space with basis

ek1 ∧ · · · ∧ ekp where k1 < · · · < kp. Abusing notation, we denote this basis element by ek,
where k ∈

(n
p

)
is a choice of p indexes from [n]. If p > n, then Λp(V ) = 0.

• If T : V → V is a linear map, then consider the alternating p-linear map τ : V p → Λp(V ), by

(v1, . . . , vp) τ7→ Tv1 ∧ · · · ∧ Tvp.

By universality, there is a unique linear map t : Λp(V )→ Λp(V ) such that τ = t ◦ ∧p. Because
this map is uniquely induced by T , let’s denote it Λp(T ).

2 Determinants
Let’s consider this last point for p = n. Notice that Λn(V ) is a 1-dimensional vector space, with
basis e1 ∧ · · · ∧ en. Given a map T : V → V such that T (ei) = vi, the induced map Λn(T ) is:

e1 ∧ · · · ∧ en
Λn(T )7−→ v1 ∧ · · · ∧ vn,

where v1 ∧ · · · ∧ vn expanded in the basis is just αe1 ∧ · · · ∧ en for some α ∈ R. So we can identify
Λn(T ) with the constant α.

We should interpret the n-vector e1 ∧ · · · ∧ en as a unit of n-volume element in V . Then, Λn(T )
tells us how much this volume element is scaled by the map T ; the value α is the familiar quantity
det(T ). We can verify this explicitly:
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Proposition 3. If T : V → V is a linear transformation of an n-dimensional vector space, then

Tu1 ∧ · · · ∧ Tun = det(T )u1 ∧ · · · ∧ un

for all u1, . . . , un ∈ V .

Proof. It suffices to show this for a basis e = {e1, . . . , en}, in which case, we can consider the matrix
of T rel e. Namely, T (ej) = ∑

eiTij . Then,

Te1 ∧ · · · ∧ Ten =
(∑

i

eiTi1

)
∧ · · · ∧

(∑
i

eiTin

)
.

Expanding out by multilinearity yields nn terms, but any terms with a repeated index is 0, so we
are left with a sum over all permutations σ ∈ Σn. From Equation 1, we obtain:

Te1 ∧ · · · ∧ Ten =

 ∑
σ∈Σn

(−1)sgn(σ)Tσ11 · · ·Tσnn

 e1 ∧ · · · ∧ en.

The term in the parenthesis is the usual expansion of the determinant of T .

Let’s write vi = Tei. We can give an interpretation of v1 ∧ · · · ∧ vn that is essentially agnostic to
T : the magnitude of v1∧ · · ·∧vn is the volume of the parallelpiped spanned by the vectors v1, . . . , vn
in V . Of course, this statement is technically not well-formed, because Λn(V ) as a vector space
has no intrinsic measure of length (and neither does V ). But once V is an inner product space (i.e.
once we’ve fixed a basis), then Λn(V ) is also made into an inner product space. Naturally, the inner
product is defined so that:

|e1 ∧ · · · ∧ en|2 = 〈e1 ∧ · · · ∧ en, e1 ∧ · · · ∧ en〉 = 1.

This analysis extends to Λp(V ) for all p. That is, Λp(V ) is also made into an inner product
space. Decomposable p-vectors v1 ∧ · · · ∧ vp encoding information about (i) the subspace spanned by
the vectors v1, . . . , vp—encapsulated in the direction of the p-vector itself, and (ii) the p-dimensional
volume of the parallelpiped spanned by those vectors, where:

vol(v1, . . . , vp) = |v1 ∧ · · · ∧ vp|.

With this interpretation, Cauchy-Binet’s formula becomes very simple. Recall that Cauchy-Binet
states: given the p vectors v1, . . . , vp ∈ V . Let X be the matrix where the ith column is vi, so:

X =

 | |
v1 · · · vp
| |

 .
Cauchy-Binet states that:

det(XTX) =
∑

k∈(n
p)

det(XT
kXk),

where Xk is the matrix minor by taking all columns and the k1, . . . , kp rows of X.
This formula is more clearly seen as a particular Pythagorean theorem, recalling that det(XTX)

gives the squared p-dimensional volume of the parallelpiped spanned by its columns. That is,
det(XTX) = |v1 ∧ · · · ∧ vp|2.

We derive Cauchy-Binet from the following lemma, expanding v1 ∧ · · · ∧ vp in the basis of Λp(V ):
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Lemma 4 (Cauchy-Binet). Let V be an n-dimensional inner product space with orthonormal
basis e, while v is a list of p elements of V , and X the matrix rel e of this list, in the sense that
vi = ∑

j Xijej for i ∈ [p]. Then,

v1 ∧ · · · ∧ vp =
∑

k∈(n
p)

det(Xk)ek,

where Xk is the matrix minor of X by taking all columns and the k1, . . . , kp rows.

Then, the Cauchy-Binet formula falls out from the Pythagorean theorem, and the fact that
det(Xk)2 = det(XT

kXk).

Proof. We write the left-hand side out as:

v1 ∧ · · · ∧ vp =

∑
i∈[n]

eiXi1

 ∧ · · · ∧
∑
i∈[n]

eiXip

 ,
where we may expand out via multilinearity; for each basis element ek for k ∈

(n
p

)
, we have the

contribution: ∑
i∈k

eiXi1

 ∧ · · · ∧
∑
i∈k

eiXin

 = det(Xk)ek,

from Proposition 3. Summing over all k ∈
(n
p

)
yields the desired formula.

Corollary 5. Let V , e, v and X as before. Let T : V → V be any linear transformation and
identify T with its matrix rel e. Then,

Tv1 ∧ · · · ∧ Tvp =
∑

h∈(n
p)

∑
k∈(n

p)
eh det(Th×k) det(Xk),

where Th×k is the matrix minor of T with rows h1, . . . , hp and columns k1, . . . , kp.

Proof. We just apply Λp(T ) to v1 ∧ · · · ∧ vp. Because Λp(T ) is linear, Lemma 4 gives:

Λp(T )(v1 ∧ · · · ∧ vp) = Tv1 ∧ · · · ∧ Tvp =
∑

k∈(n
p)

det(Xk) · Λp(T )ek,

where Λp(T )ek is, by Lemma 4 again:

Tek1 ∧ · · · ∧ Tekp =
∑

h∈(n
p)

det(Th×k)eh.

Substituting this into the first equation gives the desired formula.

In particular, if T is diagonal, then det(Th×k) = 0 if h 6= k. Denote the diagonal matrix by
Q = diag(q1, . . . , qn). Then, the the formula simplifies to:

Qv1 ∧ · · · ∧Qvp =
∑

k∈(n
p)

det(Xk) det(Qk×k)ek =
∑

k∈(n
p)
ek det(Xk)

∏
i∈k

qi.

It follows that:
det(XTQ2X) =

∑
k∈(n

p)
det(XT

kXk)
∏
i∈k

q2
i . (2)
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