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Recall that for a uniformly distributed random variable X,

H(X) = log
∣∣supp(X)

∣∣.
This equation hints the connection between entropy and combinatorics – We already saw this fact is useful for
counting applications, and today we’ll see a more advanced application for counting embeddings of general
graphs.

3.1 Application of Shearer’s Lemma to Graph Embeddings

Given a collection X1, . . . , Xn of n random variables, we can let X = (X1, . . . , Xn) package the random
variables together into a single vector. Of course, X is just another random variable, so if X is uniformly
distributed over its support, H(X) is still the log of the size of its support.

But as a practical matter, H(X) may be difficult to calculate. What we can do instead is leverage the fact
that X is built up from Xi’s. So, maybe we don’t need to examine all n of them at once. Maybe we can
just choose a smaller subset S ⊆ [n] and consider only those Xi’s for which the indices i are in S.1

Shearer’s lemma does exactly this. It bounds H(X) with respect to H(XS) considered over a distribution
of subsets S. As a result, Galvin writes, a global problem—understanding H(X1, . . . , Xn)—is reduced to a
collection of local ones—understanding H(XS) for each S.[G2014] Here is Shearer’s lemma:

Lemma 3.1.1 (Shearer). Let X1, . . . , Xn be n random variables. Let F be a family of subsets of [n], and
S ∈R F is a random subset of [n]. Suppose that there exists some α ≥ 0 such that for all i ∈ [n],

Pr [i ∈ S] ≥ α.

Then, H(X) := H(X1, . . . , Xn) is bounded above by

H(X) ≤ 1

α
E
[
H(XS)

]
.

This simply says: form a family of random vectors XS , each containing ‘partial’ information relative to X;
for each i, the coordinate Xi may or may not be contained in XS . But as long as the probability

Pr[Xi is a component of the random variable XS ]

is at least some fixed α, then H(X) may be bounded as above.

Let’s quickly refresh on how Shearer’s lemma helped us bound the maximal number of embeddings of a
triangle into a graph. Then, we’ll move to the general case of graph embeddings.

1In this way, we construct a ‘smaller’ vector XS , the projection of X onto the indices specified in S. Equivalently,

XS = (Xi : i ∈ S).
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3.1.1 Embedding Triangles

Let t be the maximal number of embeddings of a triangle into a graph G with ` edges. If we want to use
Shearer’s lemma to bound t, we should convert the combinatorial value t into an entropic one, H(X).

Naturally, this suggests that we want a space whose support is the collection of all triangles in the graph G.
Thus, let X = (X1, X2, X3), where each of the Xi’s are sampled from the vertex set V of G. Of course, we
don’t want to uniformly sample from V × V × V because not all triples of vertices in G form a triangle.

Instead, we’ll give V × V × V precisely the probability distribution whose support is those triples that form
a triangle in G, and whose distribution is uniform over that support. Now, as there are t triangles, and the
number of ways to represent the same triangle as a triple of vertices is 6 = 3!, we have

H(X) = log 6t.

We can now reduce this problem about triangles into a problem about its edges (again, turning a global
problem into a local one). When X = (X1, X2, X3) is a triangle, then its edges correspond to the subsets
(X1, X2), (X2, X3), and so on. The probability that Xi is contained in a random tuple (Xj , Xk) is 2/3.

Shearer’s lemma (where S is a random edge) gives

log 6t = H(X) ≤ 1

2/3
E [H(XS)] .

In particular, XS is a distribution over all edges contained in a triangle of G. We appeal to the maximality
of entropy of a uniform distribution to bound H(XS).2 As there are ` edges in G, H(XS) is bounded above
by log 2`, where the factor of 2 comes from the number of ways the same edge can be represented as a tuple
of vertices.

If H(XS) is bounded above by log 2` for all S, then the the expectation must also be bounded by log 2`.
Replacing this in the above inequality yields

log 6t ≤ 3

2
log 2`.

Raising both sides to the power of 2 gives:

Proposition 3.1.2. The maximal number t of embeddings of a triangle into a graph with ` edges is

t ≤ 1

6
(2`)3/2.

Hopefully, this gives us a better grasp on how Shearer’s lemma can lead to combinatorial bounds. Now, let’s
move on to graph embeddings in general.

3.1.2 Graph Embeddings

Previously, we looked at the maximal number of triangles that can exist in a graph G with ` edges. It seems
that it’s possible to give a bound because a triangle has a lot of structure—it is, after all, the complete graph
on three vertices.

2Recall, if µ is a distribution over X, the Hµ(X) ≤ Huniform(X).
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But really, all we used was that every vertex of a triangle is contained in two-third of that triangle’s edges.
And so, it seems that we should be able to generalize the solution to all graphs, and not just triangles. That
is, if we let T be any graph, what is the greatest number of ‘copies’ of T in a graph G with ` edges?

Call this number N(T, `) for short. Certainly, N(T, `) must depend on the number of edges in T itself and
something about how those edges are connected in T . And in fact, it turns out that we can get a bound on
N(T, `) dependent only on the number of edges and the so-called fractional independent set number of T , a
result proved by Friedgut and Kahn, extending Alon’s work.[FK1996, A1981]

We’ll need a few definitions before proving their result. First, to capture the way a graph is connected, we
introduce the following matrix:

Definition 3.1.3. The vertex-edge incidence matrix of a graph H is a 0-1 matrix M whose rows are indexed
by V (H) and columns by E(H), where the ij-entry indicates whether vertex i belongs to edge j.

The vertex-edge incidence matrix lets us define the fractional independent set number of a graph. But to
make its introduction less ad hoc, we’ll briefly provide some background. However, if you’re comfortable
with manipulating symbols as formal objects, feel free to skip directly to Definition 3.1.5.

Definition 3.1.4. An independent set of a graph H is a collection of vertices Y ⊂ V (H) such that no two
vertices in Y are joined by an edge of H. The independence number α(H) of a graph H is the size of a
maximal independent set.

Every subset Y ⊂ V (H) may be represented by an indicator function ψ : V (H)→ {0, 1}, where ψ(i) indicates
whether the ith vertex is contained in Y . The condition that ψ is an independent set is the requirement: for
every edge e = (u, v) ∈ E(H),

ψ(u) + ψ(v) ≤ 1.

This is written more compactly by thinking of ψ as a vector, where the ith coordinate ψi = ψ(i) indicates
whether i is contained in the independent set. Then the condition that ψ is an independent set is now just

MTψ ≤ 1.

Furthermore, because the cardinality of an independent set is 1Tψ, the independence number α is

α = max
ψ

1Tψ.

Written this way, we easily see that determining the independence number of a graph is an integer program—a
linear optimization problem with integral constraints (MTψ ≤ 1) and an integral objective function (1Tψ).

We define the fractional independent set number as the relaxation of this integer program to a linear
program—the same optimization problem where the ψi’s are allowed to take on real values.3

Definition 3.1.5. A fractional independent set is a map ψ : V (H) → [0, 1] such that for all edges e =
(u, v) ∈ E(H),

ψ(u) + ψ(v) ≤ 1.

The fractional independent set number α∗(H) is the maximal value of
∑
v∈V (H) ψ(v) over all ψ.

Determining α∗ is just a linear program (LP) that maximizes 1Tψ subject to the constraints MTψ ≤ 1 and
and ψ ≥ 0, where M is the same vertex-edge incidence matrix as before.

3There are other ways to interpret the fractional independent set number. See [G2014] for more details.
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Every optimization problem has a dual problem. Here, the dual is formally the LP that minimizes 1Tφ
subject to the constraints Mφ ≥ 1 and φ ≥ 0. Denote the minimum value of 1Tφ by γ∗, which we call the
fractional covering number of the graph H. It’ll do us some good to understand γ∗ geometrically.

Recall that M is the vertex-edge incidence matrix, so φ is a vector indexed by the edges of H. We can think
of each φi as a weight on the ith edge of H. The condition that Mφ ≥ 1 is precisely the condition: for every
vertex v ∈ V (H), the sum of weights over all edges containing v is at least 1.

This dual LP is actually the linear relaxation of another integer program: can we find a minimal collection
of edges such that every vertex is contained in an edge? That is, what is the minimal collection of edges
that cover the vertices? Thus,

Definition 3.1.6. A fractional edge covering is a map φ : E(H)→ [0, 1] such that for all vertices v ∈ V (H),∑
e∈E(H):v∈e

φ(e) ≥ 1,

where e ∈ E(H) : v ∈ e indicates a summation over all edges e containing the vertex v. The fractional
covering number γ∗ is the minimum value of

∑
e∈E(H) φ(e) over all fractional edge coverings φ.

It turns out that γ∗ = α∗, a fact that follows from a direct application of the following theorem (proof given
in reference):

Theorem 3.1.7 ([SU2011] Theorem A.3.1). A linear program and its dual have the same value.

We are now in a position to state and prove a bound for N(T, `).

Theorem 3.1.8 (Friedgut, Kahn, Alon 1996). Let T be a graph. Then N(T, `) = θ(`α
∗(T )). In particular,

if m := |E(T )| is the number of edges of T ,(
`

m

)α∗(T )

. N(T, `) ≤ (2`)α
∗(T ).

Proof. We’ll prove the lower bound by construction (i.e. produce a graph G with at most ` edges such that
there are (`/m)α

∗(T ) embeddings of T into G).

Let ψ be an optimal fractional independent set of T . By definition,∑
v∈V (T )

ψ(v) = α∗(T ),

and for every edge (u, v), we have ψ(u) + ψ(v) ≤ 1. Let cv := (`/m)ψ(v). For each v, create a cluster Cv
with cv vertices. If there is an edge between u and v, then connect each vertex in Cu with each vertex in Cv
with an edge. That is, form the complete bipartite graph between Cu and Cv. Performing this process for
each edge of T produces a graph G.

As a result, if (u, v) is an edge of T , then there are cucv edges between Cu and Cv, we get a bound

cucv =

(
`

m

)ψ(u)(
`

m

)ψ(v)
=

(
`

m

)ψ(u)+ψ(v)
≤ `

m
,

recalling that ψ(u) + ψ(v) ≤ 1. Since there are m edges in T , we can bound the number of edges in G

|E(G)| =
∑

(u,v)∈E(T )

cucv ≤
∑

(u,v)∈E(T )

`

m
≤ m · `

m
= `.
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Embedding T into G is a simple matter of choosing a vertex from each Cv for each v ∈ V (T ), so4

#{embeddings of T into G} =
∏

v∈V (T )

|Cv|

=
∏

v∈V (T )

(
`

m

)ψ(v)
=

(
`

m

)∑
v∈V (T ) ψ(v)

=

(
`

m

)α∗(T )

.

This proves the lower bound.

The upper bound is where we’ll use Shearer’s lemma. The proof will pretty much follow the proof for
the triangle case. Since we want to bound N(T, `), let G be a maximal graph (that is, there are N(T, `)
embeddings of T into G). Let K be the collection of embeddings in G.

We’ll convert the combinatorial value of N(T, `) = |K| into an entropic one by letting σ ∈R K be a random
embedding chosen uniformly from K, so that

H(σ) = logN(T, `).

Once we have an embedding σ, we look at random edges S of σ. We can calculate the probability that
a random edge contains a vertex v of σ. If we can bound this probability Pr(v ∈ S) from below for all
v ∈ V (σ), then we can apply Shearer’s lemma:

logN(T, `) = H(σ) ≤ 1

minv∈V (σ) Pr(v ∈ S)
· E [H(σS)] . (3.1)

Note that while S is a random edge of a fixed σ, σS is a random edge of σ, which itself is a random embedding
in G. Thus, σS is a random edge of G. But recall that entropy is maximized when the distribution is uniform.
Since there are ` edges in G (thus 2` possible pairs (u, v) that represent edges), the entropy of σS is bounded
above by

H(σS) ≤ log 2`.

It follows that the expectation must also be bounded by log 2`. By replacing E [H(σS)] and clearing the logs
in Equation 3.1, we get

N(T, `) ≤ (2`)1/minv∈V (σ) Pr(v∈S). (3.2)

Producing the best bound on N(T, `) with this technique is now just a matter of choosing a distribution for
S that maximizes

c := min
v∈V (σ)

Pr(v ∈ S).

Equivalently, what is the best way to assign probabilities to edges such that∑
e∈E(σ):v∈e

Pr(S = e) ≥ c

for all vertices v ∈ V (σ)? But this should be a familiar expression—it’s almost exactly the constraint
equation to determine the fractional edge covering number γ∗(T ). In fact, the only difference is sum must
be at least c instead of at least 1. So, let’s just divide by c∑

e∈E(σ):v∈e

1

c
Pr(S = e) ≥ 1.

4Technically, (`/m)α
∗(T ) is an upper-bound on the number of embeddings of T into this particular G, since |Cv | is actually

b(`/m)ψ(v)c and not (`/m)ψ(v). So this only really shows that N(T, `) = Ω
(
`α
∗(T )

)
, and not N(T, `) ≥ (`/m)α

∗(T ).
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Because our goal is to maximize c, we should minimize∑
e∈E(σ)

1

c
Pr(S = e) =

1

c
.

So, our objective is precisely the objective function that determines γ∗(T ). Thus, the best we can do is

γ∗(T ) =
∑

e∈E(σ)

1

c
Pr(S = e).

Rearranging, we get

c =

∑
e∈E(σ) Pr(S = e)

γ∗(T )
=

1

γ∗(T )
.

Replacing minv∈V (σ) Pr(v ∈ S) with 1/γ∗(T ) in Equation 3.2, we get

N(T, `) ≤
(
`

m

)γ∗(T )

.

Recall that α∗(T ) = γ∗(T ). So, we have proved our theorem.

Now, we’ll shift to a different topic: Mutual Information and KL Divergence. Reasoning about the correlation
between random variables is one of the obstacles in many of the applications and lower bounds we shall see
in the future of this course (mostly, when we start talking about interactive communication). In this lecture
we will introduce and formalize this notion (which measures correlation in an “entropic” way), its useful
properties and some applications.
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3.2 Mutual Information

Given random variables with joint distribution (X,Y ) ∼ µ, the mutual information between X and Y is

I(X;Y ) := H(X)−H(X|Y ).

Intuitively, the mutual information function measures the entropy reduction in X when we condition on a
random value of Y . That difference is therefore their shared information. The following Venn diagram helps
us visualize this.

Figure 3.1: Relationship between different quantities of information. Image courtesy of Wikipedia.

Mutual information has the basic properties:

(1) I is symmetric in X and Y . That is, I(X,Y ) = I(Y,X).

(2) I(X;Y ) = H(X)−H(X|Y ) = H(X)−H(XY ) +H(Y ) = H(Y )−H(Y |X).

(3) I(X;Y ) = 0 if and only if X and Y are independent.

(4) I(X;Y ) ≥ 0.

Properties 1–3 are easily seen from Figure 3.1,5 and Property 4 follows from the fact that conditioning does
not increase entropy. That is, H(X) ≥ H(X|Y ).

Example 3.2.1. Consider X,Y from Example 2.3.2. That is, X ∈R {0, 1, 2, 3} and Y = X mod 2. Then
I(X;Y ) = H(X)−H(X|Y ) = 2− 1 = 1.

3.2.1 Conditioning and Mutual Information

Now, let’s define conditional mutual information. Intuitively, this answers, given Z, how many bits of
information does Y give on X?

5We could also have shown these equalities from

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

https://commons.wikimedia.org/wiki/File:Entropy-mutual-information-relative-entropy-relation-diagram.svg
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Definition 3.2.2 (Conditional Mutual Information).

I(X;Y |Z) := Ez[I(X;Y |Z = z)] = H(X|Z)−H(X|Y Z).

Since the expectation is taken over the nonnegative random variable I(X;Y |Z = z), it’s true that

I(X;Y |Z) ≥ 0.

However, unlike entropy, conditioning does not necessarily decrease mutual information. Let’s take a look
at an example where I(X;Y |Z) ≤ I(X;Y ) is false.

Example 3.2.3. Let Y, Z be uniform independent in {0, 1}, and let X = Y ⊕Z, where ⊕ indicates addition
mod 2. Then, I(X;Y ) = 0, but I(X;Y |Z) = 1.

Naturally, after introducing conditional mutual information, we can prove the corresponding chain rule:

Proposition 3.2.4 (Chain Rule for Mutual Information). I(X1 . . . Xn;Y ) =
∑
i I(Xi;Y |X<i).

Proof. First, let’s show that I(X1, X2;Y ) = I(X1;Y )+I(X2;Y |X1). Generalizing this to n random variables
Y1, . . . , Yn is just a matter of letting X1 = Y1 and X2 = (Y2, . . . , Yn), then inducting.

So, following our nose, we expand out the definition of mutual information,

I(X1, X2;Y ) = H(X1, X2)−H(X1, X2|Y ).

Applying the chain rule for entropy, we have

I(X1, X2;Y ) = H(X1) +H(X2|X1)− [H(X1|Y )−H(X2|Y,X1)]

= [H(X1)−H(X1|Y )] + [H(X2|X1)−H(X2|Y,X1)] = I(X1;Y ) + I(X2;Y |X1).

This completes our proof.

Here’s an example where the chain rule helps us calculate mutual information:

Example 3.2.5. Let J ∈R {0, . . . , k − 1} be chosen uniformly at random. Randomly choose X,Y ∈R
{0, 1, . . . , 2k − 1}, encoded in binary, so that

X = (X0, . . . , Xk−1) and Y = (Y0, . . . , Yk−1),

such that X<j = Y<j, Xj 6= Yj, and X>j and Y>j are arbitrary. In other words, j is the first coordinate
that X and Y differ.

Intuitively, I(X;Y ) = O(k/2) because we should learn 1/2 of the bits of X by seeing Y , since j is expected
to reveal the first k/2 most significant bits (MSB) of X. As an exercise, pause and try proving this.

Proof. From the chain rule, we have two ways to decompose I(X,J ;Y ):

I(X, J ;Y ) = I(X;Y ) + I(J ;Y |X) = I(J ;Y ) + I(X;Y |J).

It follows that
I(X;Y ) = I(J ;Y ) + I(X;Y |J)− I(J ;Y |X).

The first term I(J ;Y ) is zero, since knowing something about Y won’t tell us anything about J . The next
term I(X;Y |J) is more interesting: if we know J = j, then the jth bit is the first bit of X and Y to differ.
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So, the mutual information conditioned on J = j is j + 1 (since Y0, . . . , Yj determines X0, . . . , Xj). Thus,
the conditional mutual information is

I(X;Y |J) = EJ [I(X;Y |J = j)] = EJ [j + 1|J = j] =
1

k

k−1∑
j=0

j + 1 =
k + 1

2
.

Finally, the last term I(J ;Y |X) gives how much information on J we gain from Y , if we know X. Since X and
Y completely determine J (taken to be the first coordinate they differ), it follows that I(J ;Y |X) = H(J).
Since J was uniform over a set with k elements, H(J) = lg k. Thus,

I(X;Y ) =
k + 1

2
− lg k =

k

2
+ lg

k√
2
,

proving I(X;Y ) = O(k/2).

Remark 3.2.6. Notice at the end of the previous proof, if we let k = 2, then I(X;Y ) = 1/2. Let’s try
computing this directly. By definition,

I(X,Y ) = H(X)−H(X|Y ) = 2− EY [H(X)|Y = y].

To calculate EY [H(X)|Y = y], we note that there are four cases in how Xi and Yi are related. In particular,

the associated probabilities for (X0
?
= Y0, X1

?
= Y1) are:

Pr(=,=) = 0, Pr(=, 6=) =
1

2
, Pr(6=,=) =

1

4
, Pr(6=, 6=) =

1

4
.

Conditioned on Y = y, each of these cases completely determine X. And as these probabilities are indepen-
dent of the value of y,

EY [H(X)|Y = y] =
1

2
lg 2 +

1

4
lg 4 +

1

4
lg 4 =

3

2
.

So, I(X,Y ) is indeed 1/2. On the other hand, I(X;Y |J) is explicitly calculated by

I(X;Y |J) = EJ [I(X;Y |J = j)] =
1

2
I(X;Y |J = 0) +

1

2
I(X;Y |J = 1) =

1

2
· 1 +

1

2
· 2 =

3

2
.

This is another case where I(X;Y ) ≤ I(X;Y |J).

This leads us to wonder when can we say I(X;Y ) ≥ I(X;Y |Z) or I(X;Y ) ≤ I(X;Y |Z)? Certainly, both
cases are possible. We’ve already seen two examples where I(X;Y ) ≤ I(X;Y |Z). And are two examples of
the other case:

Example 3.2.7. We always have the following:

I(X;Y ) ≥ I(X;Y |Y ) = 0.

We may interpret I(X;Y |Y ) as the information shared by X and Y after explaining away Y (expanding
I(X;Y |Y ) gives the same interpretation and inequality).

Example 3.2.8. Let X = {0, 1}3 be three bits, X = (X0, X1, X2). Let Y be the first two bits Y = (X0, X1)
and let Z be the latter two bits Z = (X1, X2). We easily see that I(X;Y ) = 2, while I(X;Y |Z) = 1. Like
before, I(X;Y |Z) is the number of bits shared by X and Y after explaining away the bits in Z. So,

I(X;Y ) ≥ I(X;Y |Z).

In general, there are two important cases:
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1. If X and Z are independent (i.e. X
∐
Z), then I(X;Z) = 0. So I(X;Y ) ≤ I(X;Y |Z) because

I(X;Y ) ≤ I(X;Y, Z) = I(X,Z) + I(X;Y |Z) = I(X;Y |Z).

Intuitively, even though X and Z may be independent, Z could contain information about X that may
be retrieved with Y .

2. If X and Z are independent conditioned on Y (i.e. X
∐
Z|Y ), then I(X;Y |Z) ≤ I(X;Y ) since

I(X;Y |Z) = I(X;Y,Z)− I(X;Z) ≤ I(X;Y,Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Y ).

Intuitively, if Y explains away any correlation between X and Z, then symmetrically, Z might explain
mutual information between X and Y .

Corollary 3.2.9. If X1, . . . , Xn are independent random variables, then

I(X1, . . . , Xn;Y ) ≥
∑
i

I(Xi;Y ).

Proof. We begin with

I(X1, . . . , Xn;Y ) =
∑
i

I(Xi;Y |X<i),

where each of the X<i are independent to Xi. This is case 1 from above, where I(Xi;Y |X<i) ≥ I(Xi;Y ).
Substituting back in, we get

I(X1, . . . , Xn;Y ) ≥
∑

I(Xi;Y ).

Exercise 3.2.10. Can a Shearer inequality for Mutual Information exist?

Note that unlike entropy, mutual information is a measure on random variables, not on distributions. How-
ever, as it was defined in terms of entropy, we should be able to reason about the joint distribution of
correlated random variables directly.

Let’s return to one of the earlier equalities:

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

And let’s think back to one of our interpretations of entropy a distribution µ: the smallest (or optimal)
expected number of bits needed to code an event with distribution µ. Perhaps this helps us further elucidate
the meaning of I(X;Y ), which is the difference between H(X) +H(Y ) and H(X,Y ).

The first expression H(X) + H(Y ) gives the expected number of bits we would use to code events drawn
from (X,Y ) using the optimal coding scheme for X and Y separately. However, when X and Y are not
independent random variables (i.e. they carry information about each other), we’d expect that using an
optimal coding scheme designed for their joint distribution to perform better, using on average H(X,Y ) bits
per event. It makes sense that I(X;Y ), their difference, gives a measure of how correlated X and Y are.

It’s illuminating to expand I(X;Y ) back into their expectations:

I(X;Y ) =
∑
x∼X

µ(x) lg
1

µ(x)
+
∑
y∼Y

µ(y) lg
1

µ(y)
− EX,Y

[
lg

1

µ(x, y)

]
.
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We can combine the first two expectations by introducing the factors µ(y|x) and µ(x|y), respectively:

I(X;Y ) =
∑

(x,y)∼(X,Y )

[
µ(y|x) · µ(x) lg

1

µ(x)
+ µ(x|y) · µ(y) lg

1

µ(y)

]
− EX,Y

[
lg

1

µ(x, y)

]

Of course, since µ(x, y) = µ(y|x) · µ(x) = µ(x|y) · µ(y), we really have

I(X;Y ) =
∑

(x,y)∼(X,Y )

µ(x, y)

[
lg

1

µ(x)
+ lg

1

µ(y)

]
− EX,Y

[
lg

1

µ(x, y)

]
.

Recognizing the summation (the non-grayed out terms) as an expectation over the joint distribution X,Y ,
we may combine expectations:

I(X;Y ) = EX,Y
[
lg

1

µ(x)µ(y)
− lg

1

µ(x, y)

]
= EX,Y

[
lg

µ(x, y)

µ(x)µ(y)

]
. (3.3)

In fact, now we see that Equation 3.3 formalizes the notion we stated earlier: mutual information measures
the expected improvement of bits by using a coding scheme optimized for the joint distribution µ(x, y) over
using a coding scheme optimized for X and Y individually, µ(x)µ(y).

This discussion helps motivate our next concept: the Kullback-Leibler (KL) divergence, which helps us
generalize a way to measure the relative entropy of a distribution ν with respect to a ‘true’ distribution µ,
in the same way that we compared µ(x)µ(y) with the actual joint distribution µ(x, y).

3.3 Kullback-Leibler Divergence

KL divergence, relative entropy, or information divergence, acts like a distance measure between probability
distributions on the same universe.

Definition 3.3.1 (KL Divergence). For two distributions µ, ν on the same universe U , the KL divergence
between µ and ν is

D

(
µ

ν

)
:=
∑
x∈U

µ(x) lg
µ(x)

ν(x)
= Eµ

[
lg
µ(x)

ν(x)

]
.

Notation 3.3.2. It is more common in literature for KL to be denoted by D (µ||ν), although as a result,
equations easily run off the page. As a another note, following the usual convention in this course, we will
interchangeably write D (X||Y ) to represent the KL divergence between the underlying distributions of X and
Y (this will be more convenient soon when we start talking abut conditional random variables).

An immediate result of our discussion at the end of the previous section is the following lemma:

Lemma 3.3.3. I(X;Y ) = D

(
µ(x, y)

µ(x)µ(y)

)
.

Proof. See Equation 3.3.

Although I(X;Y ) is symmetric, KL divergence is not (notice in the previous lemma, writing I(Y ;X) is
tantamount to switching x and y in the KL term, and not flipping the arguments. So even though we’d like
to think of KL divergence as a distance measure between distributions, it is not a metric. However, it is a
positive-definite function. Let’s take a closer look at its properties.
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3.3.1 Important and useful properties of KL

Example 3.3.4 (KL is not symmetric). Let µ be the distribution of a fair coin while ν the distribution of
a completely biased coin (e.g. ν(H) = 1 while ν(T) = 0). Then,

D

(
µ

ν

)
= µ(H) lg

µ(H)

ν(H)
+ µ(T) lg

µ(T)

ν(T)
=

1

2
· lg 1/2

1
+

1

2
lg

1/2

0
=∞,

and

D

(
ν

µ

)
= ν(H) lg

ν(H)

µ(H)
= lg 2 = 1.

In fact, this shows that KL divergence may not be finite. In particular,

Proposition 3.3.5. D

(
µ

ν

)
=∞⇐⇒ Supp(µ) 6⊆ Supp(ν).

Proof. The KL divergence is infinite iff there is a point x ∈ U such that µ(x) 6= 0 and ν(x) = 0. That is,
Supp(µ) 6⊆ Supp(ν).

This proposition lets us easily come up with examples to show KL is not symmetric, just by choosing
distributions µ and ν where the support of one is strictly contained in the support of the other. Before we
prove the KL divergence is positive-semidefinite, let’s take a look at a few more examples.

Example 3.3.6. We can generalize Example 3.3.4, considering two Bernoulli distributions with correspond-
ing probabilities p and q. Then,

D

(
p

q

)
= p lg

p

q
+ (1− p) lg

1− p
1− q

.

For the case where p = 1
2 + ε and q = 1

2 , we get

D

( 1
2 + ε

1
2

)
=

(
(2ε)2 − (2ε)2

2

)
+

(
(2ε)4

3
− (2ε)4

4

)
+

(
(2ε)6

5
− (2ε)6

6

)
+ · · · = O(ε2).

And in fact, recall the quadratic decay of H
(
1
2 + ε

)
, for it is not coincidence that both are order of ε2.

Example 3.3.7. Let X ∼ µ be a random variable and Supp(X) = [n]. Then, we can expand out

D

(
X

uniform(X)

)
= Eµ

[
lgµ(x)− lg

1

n

]
= −H(X) + lg n,

giving us the identity

H(X) = lg(n)− D

(
X

uniform(X)

)
.

The term lg(n) is the maximum entropy, while D (X||uniform(X)) is the amount of bits we save coding
according to X rather than the uniform distribution. Intuitively, the difference should give H(X), as above.

Now, we’ll work to show that the KL divergence is positive semi-definite:

Proposition 3.3.8. D

(
µ

ν

)
≥ 0, and D

(
µ

ν

)
= 0 if and only if µ = ν.
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Lemma 3.3.9 (Gibb’s inequality). D

(
µ

ν

)
≥ 0.

Proof. Since KL divergence is the expectation of a log, we’ll apply a common trick—flip the argument of the
logarithm, so now we have an expectation of a convex function. We can apply Jensen’s inequality to move
the expectation past the logarithm. Then, after some basic algebra, we get Gibb’s inequality:

D

(
µ

ν

)
= Eµ

[
lg
µ(x)

ν(x)

]
= Eµ

[
− lg

ν(x)

µ(x)

]
≥ − lg

(
Eµ
[
ν(x)

µ(x)

])
= − lg

(∑
x

µ(x)
ν(x)

µ(x)

)
= − lg(1) = 0.

To prove the convexity of KL, we’ll use the log-sum inequality, stated here without proof:

Lemma 3.3.10 (Log-Sum Inequality, [D2014] Remark 5.3). Let a1, . . . , an, b1, . . . , bn be nonnegative reals.
Then

n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
.

Lemma 3.3.11 (Convexity of KL). Let µ =
∑
i αiµi, ν =

∑
i αiνi. Then

∑
i

αiD

(
µi

νi

)
≥ D

(
µ

ν

)
.

Proof. Expand out the left-hand side:

n∑
i=1

∑
x∈X

αiµi(x) lg
µi(x)

νi(x)
=
∑
x∈X

n∑
i=1

αiµi(x) lg
αiµi(x)

αiνi(x)
.

We can now apply the log-sum inequality to the inner sum, whence

n∑
i=1

αiD

(
µi

νi

)
≥
∑
x∈X

(
n∑
i=1

αiµi(x)

)
lg

∑
i αiµi(x)∑
i αiνi(x)

=
∑
x∈X

µ(x) lg
µ(x)

ν(x)
= D

(
µ

ν

)
.

It should be no surprise that KL also satisfies the chain rule:

Proposition 3.3.12 (Chain Rule for KL Divergence).

D

(
X1, . . . , Xn

Y1, . . . , Yn

)
=
∑
i

Ex<i
[
D

(
Xi|x<i)
Yi|x<i

)]
.

Proof. Prove as exercise using the properties of the log function.

An immediate and useful corollary from convexity and chain rule is:
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Lemma 3.3.13. If Y1, . . . , Yn are independent random variables, then

D

(
X1, . . . , Xn

Y1, . . . , Yn

)
≥
∑
i

D

(
Xi

Yi

)
.

Proof. The proof is immediate by the chain rule and convexity of KL, observing that we can drop the
conditioning on x<i in the denominator. First, expand out the left-hand side:

D

(
X1, . . . , Xn

Y1, . . . , Yn

)
=

n∑
i=1

EX<i
[
D

(
Xi|x<i
Yi|x<i

)]
.

We can drop the conditioning on xi in the denominator because the Yi’s are independent. And so the above
is equal to

n∑
i=1

EX<i
[
D

(
Xi|x<i
Yi

)]
.

For each x<i, we get a distribution for Pr(Xi|x<i). By definition, the marginal distribution for Xi is the
sum ∑

x<i

Pr(X<i = x<i) Pr(Xi|x<i).

But these Pr(X<i = x<i) are exactly parts of the sum in the expectation:

n∑
i=1

EX<i
[
D

(
Xi|x<i
Yi

)]
=

n∑
i=1

∑
x<i

Pr(X<i = x<i) Pr(Xi|x<i)D
(
Xi|x<i
Yi

)
.

So, we may apply convexity, and replacing the right-hand side of the inequality with the marginal distribution:

n∑
i=1

EX<i
[
D

(
Xi|x<i
Yi

)]
≥

n∑
i=1

D

(
Xi

Yi

)
,

as desired.
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